1,834 research outputs found

    Molecular cloning and functional expression of the human glycine transporter GlyT2 and chromosomal localisation of the gene in the human genome1The nucleotide sequence presented here has been submitted to the GenBank database under accession number AF085412.1

    Get PDF
    AbstractNeurotransmitter transport systems are major targets for therapeutic alterations in synaptic function. We have cloned and sequenced a cDNA encoding the human type 2 glycine transporter GlyT2 from human brain and spinal cord. An open reading frame of 2391 nucleotides encodes a 797 amino acid protein that transports glycine in a Na+/Cl−-dependent manner. When stably expressed in CHO cells, human GlyT2 displays a dose-dependent uptake of glycine with an apparent Km of 108 ÎŒM. This uptake is not affected by sarcosine at concentrations up to 1 mM. Radiation hybrid analysis mapped the GlyT2 gene to D11S1308 (LOD=8.988) on human chromosome 11p15.1–15.2

    The Epitheliome: agent-based modelling of the social behaviour of cells

    Get PDF
    We have developed a new computational modelling paradigm for predicting the emergent behaviour resulting from the interaction of cells in epithelial tissue. As proof-of-concept, an agent-based model, in which there is a one-to-one correspondence between biological cells and software agents, has been coupled to a simple physical model. Behaviour of the computational model is compared with the growth characteristics of epithelial cells in monolayer culture, using growth media with low and physiological calcium concentrations. Results show a qualitative fit between the growth characteristics produced by the simulation and the in vitro cell models

    Fractal Theory Space: Spacetime of Noninteger Dimensionality

    Get PDF
    We construct matter field theories in ``theory space'' that are fractal, and invariant under geometrical renormalization group (RG) transformations. We treat in detail complex scalars, and discuss issues related to fermions, chirality, and Yang-Mills gauge fields. In the continuum limit these models describe physics in a noninteger spatial dimension which appears above a RG invariant ``compactification scale,'' M. The energy distribution of KK modes above M is controlled by an exponent in a scaling relation of the vacuum energy (Coleman-Weinberg potential), and corresponds to the dimensionality. For truncated-s-simplex lattices with coordination number s the spacetime dimensionality is 1+(3+2ln(s)/ln(s+2)). The computations in theory space involve subtleties, owing to the 1+3 kinetic terms, yet the resulting dimensionalites are equivalent to thermal spin systems. Physical implications are discussed.Comment: 28 pages, 6 figures; Paper has been amplified with a more detailed discussion of a number of technical issue

    Assessment, evaluation and quality assurance: implications for integrity in reporting academic achievement in higher education

    Get PDF
    The terms assessment, evaluation and quality assurance have various interpretations in higher education. The first two, assessment and evaluation, share considerable conceptual ground and interconnected histories. Quality assurance, on the other hand, is a more recent development. The issue of academic achievement standards in particular has significant implications for quality assurance. The first half of this article provides a selective broad-brush outline of the topics just described. The second half is about an emerging concept, grade integrity, which is focused on the trustworthiness of course grades recorded on student academic transcripts. This focus serves as a platform to illustrate: how difficult issues can be analysed; why established conventions and assumptions need to be challenged; and how ways forward can be sought out and thought through. The context for the paper is higher education but the principles also apply to other educational sectors

    Manganese(III) and its hydroxo- and chloro-complexes in aqueous perchloric acid: comparison with similar transition-metal(III) complexes

    Get PDF
    At 25°C the formation constant of MnCl2+ is found by spectrophotometry to be 13.2 ± 0.9 dm3 mol–1 at ionic strength 3.26 mol dm–3; for MnCl+2 the value is 1.1 ± 0.7 dm3 mol–1. Increase in the number of chloride ions in complexes results in longer wavelengths for the corresponding absorption maxima. In the absence of chloride the hydrolysis constant of MnIII at ionic strength 5.6 mol dm–3 is found from voltammetry and potentiometry to be 1.05± 0.26 mol dm–3. Aged managanese(III) is found to be 15–25% polymeric, from both kinetic and e.m.f. measurements. Comparison of formation constants for halogeno- and hydroxo-complexes of M3+(first transition series) shows that a combination of charge-transfer, ligand-field and coulomb interactions underlies the observed sequences; the dipole moment of OH– is also a factor

    Primordial Black Holes: Observational Characteristics of The Final Evaporation

    Full text link
    Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 10^5 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. The implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5 -10 TeV range.Comment: Accepted to Astroparticle Physics Journal (71 Pages, 22 Figures

    Metamaterials proposed as perfect magnetoelectrics

    Full text link
    Magnetoelectric susceptibility of a metamaterial built from split ring resonators have been investigated both experimentally and within an equivalent circuit model. The absolute values have been shown to exceed by two orders of magnitude that of classical magnetoelectric materials. The metamaterial investigated reaches the theoretically predicted value of the magnetoelectric susceptibility which is equal to the geometric average of the electric and magnetic susceptibilities.Comment: 5 pages, 3 figure
    • 

    corecore