887 research outputs found
Infrared regulators and SCETII
We consider matching from SCETI, which includes ultrasoft and collinear
particles, onto SCETII with soft and collinear particles at one loop. Keeping
the external fermions off their mass shell does not regulate all IR divergences
in both theories. We give a new prescription to regulate infrared divergences
in SCET. Using this regulator, we show that soft and collinear modes in SCETII
are sufficient to reproduce all the infrared divergences of SCETI. We explain
the relationship between IR regulators and an additional mode proposed for
SCETII.Comment: 9 pages. Added discussion about relationship between IR regulators
and messenger mode
On Power Suppressed Operators and Gauge Invariance in SCET
The form of collinear gauge invariance for power suppressed operators in the
soft-collinear effective theory is discussed. Using a field redefinition we
show that it is possible to make any power suppressed ultrasoft-collinear
operators invariant under the original leading order gauge transformations. Our
manipulations avoid gauge fixing. The Lagrangians to O(lambda^2) are given in
terms of these new fields. We then give a simple procedure for constructing
power suppressed soft-collinear operators in SCET_II by using an intermediate
theory SCET_I.Comment: 15 pages, journal versio
External Operators and Anomalous Dimensions in Soft-Collinear Effective Theory
It has recently been argued that soft-collinear effective theory for
processes involving both soft and collinear partons contains a new
soft-collinear mode, which can communicate between the soft and collinear
sectors of the theory. The formalism incorporating the corresponding fields
into the effective Lagrangian is extended to include external current and
four-quark operators relevant to weak interactions. An explicit calculation of
the anomalous dimensions of these operators reveals that soft-collinear modes
are needed for correctly describing the ultraviolet behavior of the effective
theory.Comment: 15 pages, 2 figure
Rare radiative exclusive B decays in soft-collinear effective theory
We consider rare radiative B decays such as B -> K^* gamma or B -> rho gamma
in soft-collinear effective theory, and show that the decay amplitudes are
factorized to all orders in alpha_s and at leading order in Lambda/m_b.By
employing two-step matching, we classify the operators for radiative B decays
in powers of a small parameter lambda(~ \sqrt{Lambda/m_b}) and obtain the
relevant operators to order lambda in SCET_I. These operators are constructed
with or without spectator quarks including the four-quark operators
contributing to annihilation and W-exchange channels. And we employ SCET_II
where the small parameter becomes of order Lambda/m_b, and evolve the operators
in order to compute the decay amplitudes for rare radiative decays in
soft-collinear effective theory. We show explictly that the contributions from
the annihilation channels and the W-exchange channels vanish at leading order
in SCET. We present the factorized result for the decay amplitudes in rare
radiative B decays at leading order in SCET, and at next-to-leading order in
alpha_s.Comment: v2: 31 pages, 11 figures. An appendix is added about the quark mass
effects on radiative B decay
Strong Phases and Factorization for Color Suppressed Decays
We prove a factorization theorem in QCD for the color suppressed decays B0->
D0 M0 and B0-> D*0 M0 where M is a light meson. Both the color-suppressed and
W-exchange/annihilation amplitudes contribute at lowest order in LambdaQCD/Q
where Q={mb, mc, Epi}, so no power suppression of annihilation contributions is
found. A new mechanism is given for generating non-perturbative strong phases
in the factorization framework. Model independent predictions that follow from
our results include the equality of the B0 -> D0 M0 and B0 -> D*0 M0 rates, and
equality of non-perturbative strong phases between isospin amplitudes,
delta(DM) = delta(D*M). Relations between amplitudes and phases for M=pi,rho
are also derived. These results do not follow from large Nc factorization with
heavy quark symmetry.Comment: 38 pages, 6 figs, typos correcte
Soft, collinear and non-relativistic modes in radiative decays of very heavy quarkonium
We analyze the end-point region of the photon spectrum in semi-inclusive
radiative decays of very heavy quarkonium (m alpha_s^2 >> Lambda_QCD). We
discuss the interplay of the scales arising in the Soft-Collinear Effective
Theory, m, m(1-z)^{1/2} and m(1-z) for z close to 1, with the scales of heavy
quarkonium systems in the weak coupling regime, m, m alpha_s and m alpha_s^2.
For 1-z \sim alpha_s^2 only collinear and (ultra)soft modes are seen to be
relevant, but the recently discovered soft-collinear modes show up for 1-z <<
alpha_s^2. The S- and P-wave octet shape functions are calculated. When they
are included in the analysis of the photon spectrum of the Upsilon (1S) system,
the agreement with data in the end-point region becomes excellent. The NRQCD
matrix elements and
are also obtained.Comment: Revtex, 11 pages, 6 figures. Minor improvements and references added.
Journal versio
Subleading Shape Functions in Inclusive B Decays
The contributions of subleading shape functions to inclusive decay
distributions of B mesons are derived from a systematic two-step matching of
QCD current correlators onto soft-collinear and heavy-quark effective theory.
At tree-level, the results can be expressed in terms of forward matrix elements
of bi-local light-cone operators. Four-quark operators, which arise at O(g^2),
are included. Their effects can be absorbed entirely into a redefinition of
other shape functions. Our results are in disagreement with some previous
studies of subleading shape-function effects in the literature. A numerical
analysis of B->X_u+l+nu decay distributions suggests that power corrections are
small, with the possible exception of the endpoint region of the charged-lepton
energy spectrum.Comment: 22 pages, 2 figures; several typos corrected; version published in
JHE
Sudakov Resummation for Subleading SCET Currents and Heavy-to-Light Form Factors
The hard-scattering contributions to heavy-to-light form factors at large
recoil are studied systematically in soft-collinear effective theory (SCET).
Large logarithms arising from multiple energy scales are resummed by matching
QCD onto SCET in two stages via an intermediate effective theory. Anomalous
dimensions in the intermediate theory are computed, and their form is shown to
be constrained by conformal symmetry. Renormalization-group evolution equations
are solved to give a complete leading-order analysis of the hard-scattering
contributions, in which all single and double logarithms are resummed. In two
cases, spin-symmetry relations for the soft-overlap contributions to form
factors are shown not to be broken at any order in perturbation theory by
hard-scattering corrections. One-loop matching calculations in the two
effective theories are performed in sample cases, for which the relative
importance of renormalization-group evolution and matching corrections is
investigated. The asymptotic behavior of Sudakov logarithms appearing in the
coefficient functions of the soft-overlap and hard-scattering contributions to
form factors is analyzed.Comment: 50 pages, 10 figures; minor corrections, version to appear in JHE
Assessing hazards and disaster risk on the coast for Pacific small island developing States: The need for a data-driven approach
Small island developing States, such as those in the Pacific, are often prone to multiple hazards that have potential to result in disaster and / or restrict development. Hazard data can be limited in resolution or omitted in or near SIDS’ coasts, but a growing and improved range of datasets are becoming available. Through an analysis of approximately 100 policy documents on hazards and disaster risk management in Pacific island nations, we found: limited information on hazards and how they manifest to disasters at local levels, thus not fully connecting driver and subsequent risk; at times a non-specific multi-hazard approach prompting needs to address more specific hazards; and restricted temporal and spatial scales of analysis that potentially limit continuity of actions where mitigation methods evolve. These limitations suggest that appropriate and timely high resolution hazard data, is needed from the top-down to underpin the design and development of local disaster risk management plans, simultaneous to local, bottom-up knowledge and interpretation to bring the realities of such hazard data to life. Developing and ensuring openly available hazard data will enable island States to develop more robust, inclusive disaster risk management plans and mitigation policies, plus aid inter-island comparison for communal learning
- …