2,260 research outputs found

    Addressing Obesity Prevention and Control in the Workplace

    Get PDF
    Texas Obesity Research Center Addressing Obesity Prevention and Control in the Workplace Hill MD, Lankford T Centers for Disease Control and Prevention; Atlanta, Georgia ABSTRACT Purpose: Over one-third of adults in the United States (U.S.), over 72 million people, are obese. There are health and economic costs associated with obesity. In 2008, obesity-related medical costs were estimated to be as high as $147 billion. Method: The Centers for Disease Control and Prevention recommend policy and environmental change strategies that address obesity in multiple settings: healthcare, schools, child care, worksites, and community. In 2011, about 111.5 million U.S. adults were full-time employees and most spend 8 to 10 hours per day at the workplace. Since an important determinant for obesity are the environments that support behaviors, work conditions may affect weight-related behaviors among employees. Results: This presentation provides examples of worksite strategies to address obesity including target behaviors such as decreasing consumption of high calorie foods, decreasing sugar drinks intake, increasing fruit and vegetable intake, increasing physical activity, and providing breastfeeding support. Specific strategies discussed will include workplace food concession and vending guidelines, providing access to portable drinking water; increasing access to fruits and vegetables through farm to institution programs and policies; creating or enhancing places for physical activity such as attractive stairwells, walking trails, and routes; and establishing and maintaining comprehensive, high-quality lactation support programs for employees. Conclusions: The worksite is a recommended setting in which to address obesity prevention and control. KEYWORDS: Obesity, Adults, Worksites, Policy, Environmen

    Recalled Fruit and Vegetable Intake while Growing up and its Association with Adult Fruit and Vegetable Intake among U.S. Adults - Analysis of the Food Attitudes and Behaviors Survey

    Get PDF
    ABSTRACT MARY D. HILL Recalled fruit and vegetable intake while growing up and its association with adult fruit and vegetable intake among U.S. adults – analysis of the food attitudes and behaviors survey (Under the direction of DR. KYMBERLE STERLING) High dietary intake of fruits and vegetables (FVs) is associated with a lower risk for chronic disease including certain cancers, optimal child growth, and weight management. More than 72 million U.S. adults are obese; therefore, fruit and vegetable intake is important in weight management. Using data from the Food Attitude and Behavior survey, this study will address the following questions: is there a correlation between recalled fruit and vegetable intake during childhood and adult fruit and vegetable intake among U.S. adults? Secondly, is reported fruit and vegetable consumption associated with sociodemographic variables and other health-related behaviors? Results indicated there is a positive correlation between recalled FV intake and reported FV intake in adults. Therefore, public health practitioners should develop initiatives to increase the amount of FV intake in children so that these FV consumption habits may continue in adulthood

    The Ultimate Power of Persuasion: Using the Mock Trial to Enhance Litigation Strategy

    Get PDF
    Article published in the Michigan Bar Journal

    Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Get PDF
    peer-reviewedBacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more effectively targeted by bacteriocins in food settings.KE, DF, CH, PC, MR, RR are supported by the Irish Government under the National Development Plan, through the Food Institutional Research Measure, administered by the Department of Agriculture, Fisheries and Food, Ireland (DAFM 13/F/462) to PC and MR, a Science Foundation Ireland (SFI) Technology and Innovation Development Award (TIDA 14/TIDA/2286) to DF, SFI-PI funding (11/PI/1137) to PDC and the APC Microbiome Insitute under Grant Number SFI/12/RC/2273

    Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli

    Get PDF
    peer-reviewedThe bacteriocins bactofencin A (class IId) and pediocin PA-1 (class IIa) are encoded by operons with a similarly clustered gene organization including a structural peptide, an immunity protein, an ABC transporter and accessory bacteriocin transporter protein. Cloning of these operons in E. coli TunerTM (DE3) on a pETcoco-2 derived vector resulted in successful secretion of both bacteriocins. A corresponding approach, involving the construction of vectors containing different combinations of these genes, revealed that the structural and the transporter genes alone are sufficient to permit heterologous production and secretion in this host. Even though the accessory protein, usually associated with optimal disulfide bond formation, was not required for bacteriocin synthesis, its presence did result in greater pediocin PA-1 production. The simplicity of the system and the fact that the associated bacteriocins could be recovered from the extracellular medium provides an opportunity to facilitate protein engineering and the overproduction of biologically-active bacteriocins at industrial scale. Additionally, this system could enable the characterization of new bacteriocin operons where genetic tools are not available for the native producers

    The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells

    Get PDF
    peer-reviewedBackground Thuricin CD is a two-component antimicrobial, belonging to the recently designated sactibiotic subclass of bacteriocins. The aim of this study was to investigate the effects of thuricin CD, as well as the antibiotics, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide when used independently and when combined at low concentrations on the viability of Clostridium difficile 20291 R027, TL178 R002, Liv022 R106, DPC6350 and VPI10463 biofilms and planktonic cells. Results On the basis of XTT (2,3-bis[2-methyloxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide)-menadione biofilm viability assays, we found that thuricin CD was effective against biofilms of R027, Liv022 R106 and DPC6350 when used independently while nitazoxanide and rifampicin were also potent against biofilms of R027 and DPC6350, when applied on their own. Tigecycline was found to be effective against R027 and DPC6350 biofilms, whereas teicoplanin and vancomycin when used independently were only effective against DPC6350 biofilms. The efficacies of the antibiotics rifampicin, tigecycline, vancomycin and teicoplanin against C. difficile 20291 R027 biofilms were significantly potentiated when combined with thuricin CD, indicating effective antimicrobial combinations with this sactibiotic against R027 biofilms. However, the potency of nitazoxanide against R027 biofilms was significantly diminished when combined with thuricin CD, indicating an ineffective combination with this sactibiotic against R027 biofilms. Paired combinations of thuricin CD along with these five antibiotics were effective at diminishing the viability of DPC6350 biofilms. However, such combinations were largely ineffective against biofilms of TL178 R002, Liv022 R106 and VPI10463. Conclusions To the best of our knowledge, this is the first study to highlight the activity of a sactibiotic bacteriocin against biofilms and the first to reveal the potency of the antibiotics tigecycline, teicoplanin and nitazoxanide against C. difficile biofilms. On the basis of this study, it is apparent that different strains of C. difficile possess varying abilities to form biofilms and that the sensitivities of these biofilms to different antimicrobials and antimicrobial combinations are strain-dependent. Since the formation of relatively strong biofilms by certain C. difficile strains may contribute to increased cases of antibiotic resistance and recurrence and relapse of C. difficile infection, the findings presented in this study could provide alternative strategies to target this pathogen.HM is a researcher in Teagasc Food Research Centre and the School of Microbiology, University College Cork, funded by the Science Foundation of Ireland (SFI)-funded Centre for Science, Engineering and Technology and the Alimentary Pharmabiotic Centre Microbiome Institute (APC) Grant Number SFI/12/ RC/2273. Research in PDC, CH, MRC and RPR laboratories is supported by the Science Foundation of Ireland (SFI)-funded Centre for Science, Engineering and Technology and the APC Microbiome Institute.Science Foundation Ireland Grant Number SFI/12/RC/227

    Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective

    Get PDF
    peer-reviewedThe continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.HM is a researcher in Teagasc Food Research Centre and the APC Microbiome Institute, funded by the Science Foundation of Ireland (SFI)-funded Centre for Science, Engineering and Technology and the APC Microbiome Institute Grant Number SFI/12/RC/2273. Research in PC, CH, MR, and RP laboratories is supported by the Science Foundation of Ireland (SFI)-funded Centre for Science, Engineering and Technology and the APC Microbiome Institute

    Genome Sequence of Geobacillus stearothermophilus DSM 458, an Antimicrobial-Producing Thermophilic Bacterium, Isolated from a Sugar Beet Factory

    Get PDF
    peer-reviewedThis paper reports the full genome sequence of the antimicrobial-producing bacterium Geobacillus stearothermophilus DSM 458, isolated in a sugar beet factory in Austria. In silico analysis reveals the presence of a number of novel bacteriocin biosynthetic genes

    Insights into the Mode of Action of the Sactibiotic Thuricin CD

    Get PDF
    peer-reviewedThuricin CD is a two-component bacteriocin, consisting of the peptides Trnα and Trnβ, and belongs to the newly designated sactibiotic subclass of bacteriocins. While it is clear from studies conducted thus far that it is a narrow-spectrum bacteriocin, requiring the synergistic activity of the two peptides, the precise mechanism of action of thuricin CD has not been elucidated. This study used a combination of flow cytometry and traditional culture-dependent assays to ascertain the effects of the thuricin CD peptides on the morphology, physiology and viability of sensitive Bacillus firmus DPC6349 cells. We show that both Trnα and Trnβ are membrane-acting and cause a collapse of the membrane potential, which could not be reversed even under membrane-repolarizing conditions. Furthermore, the depolarizing action of thuricin CD is accompanied by reductions in cell size and granularity, producing a pattern of physiological alterations in DPC6349 cells similar to those triggered by the pore-forming single-component bacteriocin Nisin A, and two-component lacticin 3147. Taken together, these results lead us to postulate that the lytic activity of thuricin CD involves the insertion of thuricin CD peptides into the membrane of target cells leading to permeabilization due to pore formation and consequent flux of ions across the membrane, resulting in membrane depolarization and eventual cell death.HM is a researcher in Teagasc Food Research Centre and the Alimentary Pharmabiotic Centre Microbiome Institute, funded by the Science Foundation of Ireland (SFI)-funded Centre for Science, Engineering and Technology and the Alimentary Pharmabiotic Centre Microbiome Institute (APC) Grant Number SFI/12/RC/2273. Research in PC, CH, MR, VF, and RR laboratories is supported by the Science Foundation of Ireland (SFI)-funded Centre for Science, Engineering and Technology and the APC Microbiome Institute
    corecore