2,003 research outputs found

    Moderate changes in CO2 modulate the firing of neurons in the VTA and substantia nigra

    Get PDF
    The substantia nigra (SN) and ventral tegmental area (VTA) are vital for the control of movement, goal-directed behavior, and encoding reward. Here we show that the firing of specific neuronal subtypes in these nuclei can be modulated by physiological changes in the partial pressure of carbon dioxide (PCO2). The resting conductance of substantia nigra dopaminergic neurons in young animals (postnatal days 7–10) and GABAergic neurons in the VTA is modulated by changes in the level of CO2. We provide several lines of evidence that this CO2-sensitive conductance results from connexin 26 (Cx26) hemichannel expression. Since the levels of PCO2 in the blood will vary depending on physiological activity and pathology, this suggests that changes in PCO2 could potentially modulate motor activity, reward behavior, and wakefulness

    Detecting CO2-sensitive hemichannels in neurons in acute brain slices

    Get PDF
    This protocol provides two independent methods to functionally detect the neuronal expression of CO2-sensitive hemichannels. These hemichannels (consisting of connexins 26 or 30) are directly gated by CO2, independent of pH changes and until recently were thought to be only expressed by glia. This protocol outlines a method to change the concentration of CO2 without changing pH, using isohydric solutions and then utilizing this to detect opening and closing of functional hemichannels using whole-cell patch clamp recording and dye loading

    Alpha-synuclein aggregates increase the conductance of substantia nigra dopamine neurons, an effect partly reversed by the KATP channel inhibitor glibenclamide

    Get PDF
    Dopaminergic neurons in the substantia nigra pars compacta (SNpc) form an important part of the basal ganglia circuitry, playing key roles in movement initiation and co-ordination. A hallmark of Parkinson’s disease (PD) is the degeneration of these SNpc dopaminergic neurons leading to akinesia, bradykinesia and tremor. There is gathering evidence that oligomeric alpha synuclein (α-syn) is one of the major pathological species in PD, with its deposition in Lewy bodies closely correlated with disease progression. However the precise mechanisms underlying the effects of oligomeric α-syn on dopaminergic neuron function have yet to be fully defined. Here we have combined electrophysiological recording and detailed analysis to characterise the time-dependent effects of α-syn aggregates (consisting of oligomers and possibly small fibrils) on the properties of SNpc dopaminergic neurons. The introduction of α-syn aggregates into single dopaminergic neurons via the patch electrode significantly reduced both the input resistance and the firing rate without changing the membrane potential. These effects occurred after 8-16 minutes of dialysis but did not occur with the monomeric form of α-syn. The effects of α-syn aggregates could be significantly reduced by pre-incubation with the ATP-sensitive potassium channel (KATP) inhibitor glibenclamide. This data suggests that accumulation of α-syn aggregates in dopaminergic neurons may chronically activate KATP channels leading to a significant loss of excitability and dopamine release

    Understanding the pathophysiological actions of tau oligomers : a critical review of current electrophysiological methods

    Get PDF
    Tau is a predominantly neuronal protein that is normally bound to microtubules, where it acts to modulate neuronal and axonal stability. In humans, pathological forms of tau are implicated in a range of diseases that are collectively known as tauopathies. Kinases and phosphatases are responsible for maintaining the correct balance of tau phosphorylation to enable axons to be both stable and labile enough to function properly. In the early stages of tauopathies, this balance is interrupted leading to dissociation of tau from microtubules. This leaves microtubules prone to damage and phosphorylated tau prone to aggregation. Initially, phosphorylated tau forms oligomers, then fibrils, and ultimately neurofibrillary tangles (NFTs). It is widely accepted that the initial soluble oligomeric forms of tau are probably the most pathologically relevant species but there is relatively little quantitative information to explain exactly what their toxic effects are at the individual neuron level. Electrophysiology provides a valuable tool to help uncover the mechanisms of action of tau oligomers on synaptic transmission within single neurons. Understanding the concentration-, time-, and neuronal compartment-dependent actions of soluble tau oligomers on neuronal and synaptic properties are essential to understanding how best to counteract its effects and to develop effective treatment strategies. Here, we briefly discuss the standard approaches used to elucidate these actions, focusing on the advantages and shortcomings of the experimental procedures. Subsequently, we will describe a new approach that addresses specific challenges with the current methods, thus allowing real-time toxicity evaluation at the single-neuron level

    Consanguinity and susceptibility to infectious diseases in humans.

    Get PDF
    Studies of animal populations suggest that low genetic heterozygosity is an important risk factor for infection by a diverse range of pathogens, but relatively little research has looked to see whether similar patterns exist in humans. We have used microsatellite genome screen data for tuberculosis (TB), hepatitis and leprosy to test the hypothesis that inbreeding depression increases risk of infection. Our results indicate that inbred individuals are more common among our infected cases for TB and hepatitis, but only in populations where consanguineous marriages are common. No effect was found either for leprosy, which is thought to be oligogenic, or for hepatitis in Italy where consanguineous marriages are rare. Our results suggest that consanguinity is an important risk factor in susceptibility to infectious diseases in humans

    Introduction of tau oligomers into cortical neurons alters action potential dynamics and disrupts synaptic transmission and plasticity

    Get PDF
    Tau is a highly soluble microtubule-associated protein that acts within neurons to modify microtubule stability. However, abnormally phosphorylated tau dissociates from microtubules to form oligomers and fibrils which associate in the somatodendritic compartment. Although tau can form neurofibrillary tangles (NFTs), it is the soluble oligomers that appear to be the toxic species. There is, however, relatively little quantitative information on the concentration-dependent and time-dependent actions of soluble tau oligomers (oTau) on the electrophysiological and synaptic properties of neurons. Here, whole-cell patch clamp recording was used to introduce known concentrations of oligomeric full-length tau-441 into mouse hippocampal CA1 pyramidal and neocortical Layer V thick-tufted pyramidal cells. oTau increased input resistance, reduced action potential amplitude and slowed action potential rise and decay kinetics. oTau injected into presynaptic neurons induced the run-down of unitary EPSPs which was associated with increased short-term depression. In contrast, introduction of oTau into postsynaptic neurons had no effect on basal synaptic transmission, but markedly impaired the induction of long-term potentiation (LTP). Consistent with its effects on synaptic transmission and plasticity, oTau puncta could be observed in the soma, axon and in the distal dendrites of injected neurons

    CO2-sensitive connexin hemichannels in neurons and glia : three different modes of signalling?

    Get PDF
    Connexins can assemble into either gap junctions (between two cells) or hemichannels (from one cell to the extracellular space) and mediate cell-to-cell signalling. A subset of connexins (Cx26, Cx30, Cx32) are directly sensitive to CO2 and fluctuations in the level within a physiological range affect their open probability, and thus, change cell conductance. These connexins are primarily found on astrocytes or oligodendrocytes, where increased CO2 leads to ATP release, which acts on P2X and P2Y receptors of neighbouring neurons and changes excitability. CO2-sensitive hemichannels are also found on developing cortical neurons, where they play a role in producing spontaneous neuronal activity. It is plausible that the transient opening of hemichannels allows cation influx, leading to depolarisation. Recently, we have shown that dopaminergic neurons in the substantia nigra and GABAergic neurons in the VTA also express Cx26 hemichannels. An increase in the level of CO2 results in hemichannel opening, increasing whole-cell conductance, and decreasing neuronal excitability. We found that the expression of Cx26 in the dopaminergic neurons in the substantia nigra at P7-10 is transferred to glial cells by P17-21, displaying a shift from being inhibitory (to neuronal activity) in young mice, to potentially excitatory (via ATP release). Thus, Cx26 hemichannels could have three modes of signalling (release of ATP, excitatory flickering open and shut and inhibitory shunting) depending on where they are expressed (neurons or glia) and the stage of development

    Understanding the direct and indirect mechanisms of xylanase action on starch digestion in broilers

    Get PDF
    The objective of the current study was to investigate the mechanisms of xylanase action in a maize-soya diet and its effect on starch digestion. A total of 60 broilers were divided into 6 treatment groups; a control group without xylanase, and five other groups supplemented with xylanase (Econase XT 25; 100 g/t) from 1, 2, 3, 4 or 5 weeks before slaughter. At the end of the experiment, digesta was collected from the gizzard, upper and lower small intestine, and both caeca. Digesta pH ranged from pH 2.2-4.4, 5.9-6.6, 6.7-7.8 and 5.7-7.3 in the gizzard, upper small intestine, lower small intestine, and both caeca, respectively, with no effect of xylanase (P > 0.05). Scanning Electron Microscope (SEM) images along with total starch measurements showed the progression of starch digestion through the tract. The SEM did not show any greater disruption to cell wall material with xylanase supplementation. This suggests that xylanase was not working directly on the cell wall and provides evidence for the hypothesis that xylanase works through an indirect mechanism. Peptide YY (PYY) concentration in the blood was higher during the first few weeks of supplementation, with longer periods of supplementation nulling this effect, implying that xylanase may be acting through a prebiotic mechanism. The RT-q PCR results revealed a numerical increase in glucose transporter (GLUT2 and SGLT1) expression at 2 and 3 weeks of xylanase supplementation, respectively, which might suggest a greater absorption capacity of birds. From these results, a potential mechanism of xylanase action in maize-based diets has been proposed

    Single incision laparo-endoscopic surgery (SILS) is comparable with robotic surgery at a tertiary care center for the management of gynecologic oncology patients

    Get PDF
    A shift toward minimally invasive surgical techniques has been implemented in the surgical management of gynecologic oncology patients. Over the course of 18 months, we have established a single incision laparo-endoscopic surgery program (SILS), and incorporated it in the management of our patients. We sought to assess the operative and postoperative outcomes of these patients in relation to patients who underwent robotic surgery during that same time period at our institution

    Multimodal perioperative pain protocol for gynecologic oncology laparotomy is associated with reduced hospital length of stay and improved patient pain scores

    Get PDF
    The primary objective was to evaluate the impact of a multimodal perioperative pain regimen on length of hospital stay for patients undergoing laparotomy with a gynecologic oncologist
    • …
    corecore