65,919 research outputs found

    A theoretical approach for analyzing the restabilization of wakes

    Get PDF
    Recently reported experimental results demonstrate that restabilization of the low-Reynolds-number flow past a circular cylinder can be achieved by the placement of a smaller cylinder in the wake of the first at particular locations. Traditional numerical procedures for modeling such phenomena are computationally expensive. An approach is presented here in which the properties of the adjoint solutions to the linearized equations of motion are exploited to map quickly the best positions for the small cylinder's placement. Comparisons with experiment and previous computations are favorable. The approach is shown to be applicable to general flows, illustrating how strongly control mechanisms that involve sources of momentum couple to unstable (or stable) modes of the system

    Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock

    Get PDF
    Large-eddy simulations of the Richtmyer–Meshkov instability with reshock are pre- sented and the results are compared with experiments. Several configurations of shocks initially travelling from light (air) to heavy (sulfur hexafluoride, SF6) have been simulated to match previous experiments and good agreement is found in the growth rates of the turbulent mixing zone (TMZ). The stretched-vortex subgrid model used in this study allows for subgrid continuation modelling, where statistics of the unresolved scales of the flow are estimated. In particular, this multiscale modelling allows the anisotropy of the flow to be extended to the dissipation scale, eta, and estimates to be formed for the subgrid probability density function of the mixture fraction of air/SF6 based on the subgrid variance, including the effect of Schmidt number

    Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    Get PDF
    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or E×B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge

    Multimegawatt thermionic reactor systems for space applications

    Get PDF
    Design features and performance characteristics of thermionic reactor systems for space application

    Analysis of non-premixed turbulent reacting flows

    Get PDF
    Studies of chemical reactions occurring in turbulent flows are important in the understanding of combustion and other applications. Current numerical methods are limited in their applications due to the numerical resolution required to completely capture all length scales, but, despite the fact that realistic combustion cannot be solved completely, numerical simulations can be used to give insight into the interaction between the processes of turbulence and chemical reaction. The objective was to investigate the effects of turbulent motion on the effects of chemical reaction to gain some insight on the interaction of turbulence, molecular diffusion, and chemical reaction to support modeling efforts. A direct turbulence simulation spectral code was modified to include the effects of chemical reaction and applied to an initial value problem of chemical reaction between non-premixed species. The influence of hydrodynamics on the instantaneous structure of the reaction was investigated. The local scalar dissipation rates and the local reaction rates were examined to determine the influence of vorticity or rate of strain on the reaction and the structure of the scalar field

    A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows

    Get PDF
    This paper describes a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described with an explicit centered scheme used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Three-dimensional numerical simulations of a Richtmyer-Meshkov instability are presented

    INTERP3: A computer routine for linear interpolation of trivariate functions defined by nondistinct unequally spaced variables

    Get PDF
    A report on the computer routine INTERP3 is presented. The routine is designed to linearly interpolate a variable which is a function of three independent variables. The variables within the parameter arrays do not have to be distinct, or equally spaced, and the array variables can be in increasing or decreasing order

    Optimising Matrix Product State Simulations of Shor's Algorithm

    Get PDF
    We detail techniques to optimise high-level classical simulations of Shor's quantum factoring algorithm. Chief among these is to examine the entangling properties of the circuit and to effectively map it across the one-dimensional structure of a matrix product state. Compared to previous approaches whose space requirements depend on rr, the solution to the underlying order-finding problem of Shor's algorithm, our approach depends on its factors. We performed a matrix product state simulation of a 60-qubit instance of Shor's algorithm that would otherwise be infeasible to complete without an optimised entanglement mapping.Comment: 8 pages, 2 figures, 2 tables. v2 using PDFLaTeX compiler. v3 to include extra references. v4 for publication in Quantu

    Holomorphic Extension from Weakly Pseudoconcave CR Manifolds

    Full text link
    Let M be a smooth locally embeddable CR manifold, having some CR dimension m and some CR codimension d. We find an improved local geometric condition on M which guarantees, at a point p on M, that germs of CR distributions are smooth functions, and have extensions to germs of holomorphic functions on a full ambient neighborhood of p. Our condition is a form of weak pseudoconcavity, closely related to essential pseudoconcavity as introduced in [HN1]. Applications are made to CR meromorphic functions and mappings. Explicit examples are given which satisfy our new condition,but which are not pseudoconcave in the strong sense. These results demonstrate that for codimension d > 1, there are additional phenomena which are invisible when d = 1

    Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark

    Full text link
    In models of dynamical electroweak symmetry breaking which sensitively involve the third generation, such as top quark condensation, the effects of the new dynamics can show up experimentally in Z->b\bar{b}. We compare the sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new strongly coupled U(1) gauge bosons, while it is generally less sensitive a probe to new physics involving color octet gauge bosons as is top quark production itself. Nonetheless, to accomodate a significant excess in Z->b\bar{b} requires choosing model parameters that may be ruled out within run I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-
    • …
    corecore