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We detail techniques to optimise high-level
classical simulations of Shor’s quantum factor-
ing algorithm. Chief among these is to ex-
amine the entangling properties of the cir-
cuit and to effectively map it across the
one-dimensional structure of a matrix prod-
uct state. Compared to previous approaches
whose space requirements depend on r, the
solution to the underlying order-finding prob-
lem of Shor’s algorithm, our approach depends
on its factors. We performed a matrix prod-
uct state simulation of a 60-qubit instance of
Shor’s algorithm that would otherwise be in-
feasible to complete without an optimised en-
tanglement mapping.

1 Introduction

With the potential for quantum computers to out-
perform the best classical computing resources avail-
able, achieving this quantum supremacy promises to
be a major milestone in computing. However, the
ability to demonstrate quantum supremacy [1-3| de-
pends on several factors, including the computational
task under consideration, as well as properties of the
physical quantum computer (e.g. connectivity and
error rate). On the side of classical computation, the
difficulty in defining a quantum supremacy point for
a given problem stems from bounding the computa-
tional power of classical machines. Therefore, we seek
techniques to perform simulations of quantum algo-
rithms and circuits more efficiently [3-5]. Generally,
quantum algorithms possess some sort of structure
that might be exploited to provide some advantage to
classical simulation. In this paper, we examine how
the entanglement structure of Shor’s algorithm for in-
teger factorisation lends itself to a particular matrix
product state representation that quantifiably reduces
the computational requirements for classical simula-
tion. Additionally, we show how particular instances
of Shor’s algorithm become significantly easier to sim-
ulate when this structure is exploited.

Shor’s algorithm [6] may be used to factor a
semiprime integer N of [ binary digits in polyno-
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mial time with respect to [ on a quantum computer.
Presently, there is no known algorithm to perform this
factorisation efficiently (i.e. in polynomial time) on a
classical computer. The presumed difficulty of factor-
ing very large semiprime numbers is the foundation
underpinning the security of the RSA public-key cryp-
tosystem [7] used to secure online communications [8].
This provides motivation to build quantum comput-
ers capable of performing large enough instances of
Shor’s algorithm and to develop public-key cryptosys-
tems resistant to quantum computers [9].

Existing physical implementations of Shor’s algo-
rithm [10-13] have been produced to factor small
semiprimes no longer than five bits in length. This is
significantly less than even the 15-bit instances first
simulated in [14], requiring 45 qubits. Therefore, the
simulated instances presented in this paper may be
presented as medium-term goals for quantum hard-
ware to benchmark against.

A typical state vector representation of an n-qubit
system requires the storage of 2" complex scalars, re-
gardless of the state being stored. While simulations
of quantum circuits may be performed by operating
on this collection of scalars, the exponential space
complexity ultimately limits the size of the systems
that can reasonably be simulated. Instead, by using
the matrix product state representation [15] of a quan-
tum state, the space requirements scale according to
the amount of entanglement present in the system.
As tensor networks [16], matrix product states were
originally used for simulating one-dimensional quan-
tum many-body systems [17, 18], but have since been
adapted for simulating quantum circuits [14, 15, 19].
As such, even states of many qubits may feasibly
be stored using a matrix product state representa-
tion, provided its entanglement is sufficiently lim-
ited. Other examples of tensor networks that may
be used to simulate quantum circuits include PEPS
[20], MERA [21] and tree tensor networks [22].

By examining the entanglement introduced by a
high-level circuit of Shor’s algorithm, we were able to
improve space requirements over previous simulations
[14] by sensibly mapping this entanglement across the
one-dimensional structure of a matrix product state.
Furthermore, in treating the task of simulating Shor’s
algorithm as a sampling problem, we could take ad-
vantage of single-qubit measurement to collapse en-
tanglement and hence reduce our space usage. The
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combined result of our optimisations allowed us to
simulate a nontrivial instance of Shor’s algorithm in-
volving 60 qubits on a supercomputer using an ap-
proximate total of 14 TB of RAM. In comparison to
the 260 x 128 bit ~ 1.8 x 107 TB to store a state vec-
tor for 60 qubits in double precision, this represents a
significant reduction in the required memory.

To outline this paper, we begin with a review of
Shor’s algorithm in Sec. 2 and a review of the matrix
product state formalism in Sec. 3. We then examine
the entanglement introduced at particular stages in
Shor’s algorithm in Sec. 4 and then detail in Sec. 5
how the subsystems of a matrix product state may
be partitioned to take advantage of this entanglement
evolution. Finally, we provide benchmarks of our im-
plementation in Sec. 6, including our simulation of a
60-qubit instance.

2 Review of Shor's Algorithm

We consider the circuit shown in Fig. 1 for this review
of Shor’s algorithm and for the general structure of
our following simulations. Given an odd, squarefree
semiprime N = pq represented by at least [ binary
digits, a high-level circuit for Shor’s algorithm as de-
tailed in [23] consists of an ‘upper’ register of 2/ qubits
initialised to |0) and a ‘lower’ register R of [ qubits
initialised to the state |1):

[Pinit) = [0) @ |1) .

The Hadamard gate is then applied to each qubit of
the upper register, creating the superposition

|wsupcrpos> = (H®2l) & (I®l) |winit>
22l_1
=Y e,
i=0

where we shall ignore normalisation constants for clar-
ity. Randomly choosing integer a # 1 from Z3, the
set of integers modulo and coprime to N, exponents
of the unitary operator

U |x) = |axz mod N) (1)

are applied to the lower register, controlled by qubits
in the top:

22l 1

Sl eut)

i=0

|wmodexp> =
2201
= Z |i) ® |a" mod N)
i=0
r—1
= Z Z kr + j) ® |a’ mod N),
j=0 k=0

k:r+j<22" k<22l/r

(2)

where r is the period of U. To determine this period r,
the lower register is measured, forcing a choice of the
index j in Eq. (2). This collapses the entanglement
between the two registers, and we can now separate
them. The upper register is now in state

|Ypupper) = Z |kr + ) (3)

k=0
k<22 /r

for the 0 < j < r corresponding to the value (a’ mod
N) measured from the lower register in Eq. (2).

The quantum Fourier transform (QFT) is then ap-
plied to this upper register:

e27ri(k:r+j)s/22l |s)

22l 1
QFT |¢upper> = Z

s=0 k=0

k<2 /r
2211
21 . . 21
— § :6271'”5/2 § e27mk'r5/2 |S>
s=0 k=0

k<22 /r

The upper register is then measured to produce a
value s with probability

Pr(S =s) x Z e2mikrs/2 (4)
k=0
k<2 /r

for random variable S. This implies that values of s
such that rs/22 is close to an integer are more likely
to be measured, resulting in the peaks shown in the
example probability distribution in Fig. 1(c). The
quantum processing component of Shor’s algorithm
is now complete, and the result of S may be classi-
cally processed using the continued fractions and Eu-

clidean algorithms to successfully factor N with high
probability [23].

3 Review of Matrix Product States

To briefly review the matrix product state (MPS) [15]
formalism for representing quantum states, we begin
with some general composite state of n subsystems
given by

di—1da—1 dp—1
) =D ) D Biriaeiy [i1) @ i) @ -+ @ Jin) -
11=0 i2=0 in, =0

(5)

A subsystem m with dimensionality d,, is referred to
as a d,,-level qudit. In the case where d,,, =2, m is a
qubit. Conventionally, the state-vector approach for
computationally storing this state involves recording
each of the complex coefficients v;,:,..s, in a single,
perhaps multidimensional, array. The space complex-
ity of this particular representation is fixed at O(d) re-
gardless of the specific state |}, where d = [ _, dn,.
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Figure 1: Schematic for the order-finding quantum subroutine in Shor's algorithm. (a) High-level circuit diagram for factoring
a semiprime N of [ binary digits. For randomly chosen a such that 1 < a < N, U performs U |z) — |az mod N). S is the
result of final measurement of the upper register. (b) A single block in the linear nearest-neighbour quantum Fourier transform.
A phase gate labelled by x performs |0) — |0) and |1) — exp(—in/2%)|1). (c) Example probability distribution for .S, where

=5 N=21,and a = 2.

At its core, the MPS representation of a state in-
volves storing matrices for each qudit, whose product
equals each of the coefficients in Eq. (5):

Viyiy..i, = PR

a1 [e3Res)

il (6)
where we have used the usual summation nota-
tion. Notably, qudits whose matrices are adjacent
in Eq. (6) may be contracted and redefined into a
higher-dimensional qudit:

[mym+1{im im+1} = I‘[m]im
Am—1Q®m+1 S

F[m+1]inL+1_ (7)

m—10m "~ OmQm41

By sequentially contracting adjacent qudits, the state
vector representation may be obtained from an MPS
representation of a state. Additionally, the reverse op-
eration of Eq. (7) may be performed to decompose the
matrices of two combined qudits. This involves rear-
ranging the elements of I‘Tﬁzuﬁm i gy Eq. (7)
and applying a matrix decomposition such as the triv-

ial decomposition

o Maam Iamb,
My =
Iaam Mamby

dim {a} > dim {b}

dim {a} < dim {b} ’ ®

where [ is the appropriately sized identity matrix,
or the rank-revealing singular value decomposition
(SVD)

Mab = UaamSamVamb; (9)

where U and V are unitary matrices and the singular
values, the elements of S, are nonnegative reals. The

intermediate index «,, is referred to as the bond index
of its respective bipartition. By sequentially decom-
posing qudits into constituent subsystems, an MPS
representation of a state represented in the state vec-
tor form may be obtained.

Though the trivial decomposition, Eq. (8), is sim-
ple to perform, an MPS produced solely from such
decompositions on a state vector representation offers
no computational advantage in terms of time or space
usage. Instead, if the SVD, Eq. (9), is used as the de-
composition, the MPS representation might look like

Wity = TN PRIE2 2]y [n—1)p[nlin

17 1’ o Ap—1" Op—1"7 (10)
where each A" is the vector of singular values ob-
tained from Eq. (9). If care is taken during the
treatment of these singular values [15], a canonical

MPS form can be defined such that these )\m are
equal to the Schmidt coefficients [23] across biparti-
tion [1,...,m] : [m+1,...,n]. Furthermore, if x["
is the Schmidt rank across this bipartition, dim {o, }
can be set to x[™ by only storing values corresponding
to nonzero Schmidt coefficients. Consequently, with
the Schmidt ranks as a measure of the entanglement
within a state, ‘less entangled’ states in a canonical
MPS representation have lower space requirements to
store.

To simulate measurements on qudit m of a compos-
ite system, the reduced density matrix of m may be
obtained from the general MPS expression, Eq. (6),
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by tracing over all other qudit subsystems:

pgt:]i;n = ]'—‘[oﬂil "'Fmif?am _.Fgﬂ]in

n—1

T )

[1]é1 [m]il,
xDp Ty B1r

m—1Pm
where the bars denote complex conjugation. From
this, the measurement probabilities of the d,,, possible
values of m may be read from the diagonal elements

of pl™. For a canonical MPS in the form of Eq. (10),
pl™ may instead be obtained locally:

P, = “plmlim L,

A —10m - Em—10m

Alm=1]

Am—1

2
A a2)

due to unitarity of the resulting matrices of an SVD.
Even if an MPS is not in canonical form, the reduced
density matrix pl"™ of qudit m may still be obtained
from Eq. (12) if pairwise contractions and SVDs are
performed from the ends of the MPS in toward m. We
refer to series of such pairwise contractions and SVDs
as a sweep. Following a simulated measurement of
m, which might partially collapse the entire state’s
entanglement, sweeps outward from m may be used
to propagate this collapse and reduce our space usage.

Finally, applying a single-qudit gate U as a uni-
tary transformation to qudit m in an MPS may be
performed as a local operation:

Plmlin Uimihfﬁﬁli’?am.

m—1%m
This can be generalised to multiple-qudit gates acting
on consecutive qudits in an MPS by contracting them,
applying the gate, and then decomposing. SWAP gates
may be used to rearrange the order of qudits in an
MPS.

4 Entanglement in Shor's Algorithm

Since the space usage of an MPS scales with the
amount of entanglement in the state, we should ex-
amine the entangling properties of Shor’s algorithm
in order to determine an efficient embedding of the
circuit’s 31 qubits into an MPS with its inherently lin-
ear connectivity. By rewriting Eq. (3) for the state of
the upper register following measurement of the lower
register R in the form

|¢upper> X ‘J>+|j+7">+ |j+2’f’>+ ) (13)

we observe that the « least-significant bits of each
state on the right hand side of Eq. (13) are identical,
where « is the number of trailing zeroes in the binary
representation of r. Therefore, immediately prior to
the measurement of R, these « least-significant qubits
of the upper register only exhibit entanglement with
R and not between themselves or other qubits of the
upper register. Also at this point in the circuit, the
remaining 2/ — o« most-significant qubits of the upper
register exhibit entanglement between themselves and

with the lower register R, due to the odd factor g =
/2% of r which cannot be localised to specific qubits.

Following measurement of the lower register, all [
qubits in R are now completely separable. Entan-
glement between the upper register with R is con-
sequently collapsed, leaving the upper register’s «
least-significant qubits completely separable and its
remaining 2/ — o most-significant qubits only entan-
gled amongst themselves.

To examine some properties of «, we note that r
divides A(N), the Carmichael function at N, which
is defined as the smallest integer such that z*™) =
1mod N for all x € Z},. By the Chinese remainder
theorem and Carmichael’s theorem,

AN)=lem(p—1,g—1) (14)

for our odd, squarefree semiprime N. Therefore if d,,
is the largest integer such that 2% |(p—1) and similarly
for d,, then max(d,, d,) is the largest value « can take
for a specific N over all choices of a.

Also by the Chinese remainder theorem, uniformly
choosing a # 1 from Z} is equivalent to indepen-
dently and uniformly choosing a;, € Z; and a4 € Zj
so that ap,a, # 1. Therefore, by [23, Lemma A4.12],

Pr(o = max(dp, dq)) > % (15)

asymptotically for randomly and uniformly chosen
a# 1.

Furthermore, Dirichlet’s theorem implies that there
is asymptotically a 2'~™ probability that 2™|(p — 1)
for randomly chosen prime p. Therefore, d, is dis-
tributed geometrically such that Pr(d, =m) =2"".
If p and ¢ are independently chosen, d, and d, are
i.i.ds whose maximum has an expected value

B(max(dy. d,)) = 5 (16)
by [24, Eq. (2.6)].

This analysis suggests a further partitioning of the
upper register. From now, we will refer to A as the
set of « least-significant qubits in the upper register
and B as the remaining 2] — « most-significant qubits
of the upper register.

5 MPS Implementation

5.1 Previous approaches

High-level simulations of Shor’s algorithm were per-
formed in [14] with a static MPS qudit ordering that
places the upper-register qubits on one side of the
lower register R, per the example in Fig. 2(a). To
briefly summarise this static method, the [ qubits of R
were kept contracted as a single qudit. With R effec-
tively stored as a 1-dimensional qudit in the state |1),
each of the 2] upper-register qubits g; for 0 < < 2l is
entangled with R by applying the following procedure
to each ¢; in order of descending i:
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Figure 2: Comparison between MPS qudit layouts for example parameters [ = 11, N = 1943, and a = 2, resulting in
r =924 = 231 x 22, (a) and (b) show tensor network diagrams [16] for the static and dynamic qudit layouts respectively,
where red (blue) tensors correspond to tensors in A (B) and the green tensor represents the lower-register qudit R. (c) and
(d) show the Schmidt ranks across each bipartition in the static and dynamic layouts immediately following application of the
controlled exponentiated U gates, with significant reductions across the highlighted bipartitions.

e An initially separable qubit g; is inserted between
the previous upper-register qubit and R by al-
tering the bond sizes appropriately and is set to
the state (|0)+|1))/v/2, representing the starting
round of Hadamard gates.

e The gate U?', which may be formed by repeated
squaring of U, Eq. (1), is applied to R and con-
trolled by g;. This involves contracting ¢; with R
beforehand and may require R’s current effective
dimensionality to be increased.

e This contraction is then decomposed back into
qubit ¢; and the lower-register qudit R by using
the trivial decomposition, Eq. (8). Rank minimi-
sation through a rank-revealing decomposition is
not required at this stage since the apparent rank
from the trivial decomposition is equal to the
Schmidt rank.

With sufficient index book-keeping, these steps may
be combined into a single operation per qubit ¢;. The
effect of these controlled operations between each of
the 2 upper-register qubits with the lower register
R is to quickly initialise an MPS that encodes the

state |Ymodexp) I Eq. (2) with the MPS qudit lay-
out [B] : [A] : [R], defined in Sec. 4. As all upper-
register qubits are on one side of the lower-register
qudit, applying these controlled gates ensures that the
Schmidt ranks at each bipartition are nondecreasing
toward the lower-register qudit. This culminates in
a rank of r between the least-significant qubit ¢y of
the upper register with the lower register R [25], as
demonstrated in Eq. (2) and Fig. 2(c). Additionally,
R is effectively stored as an r-dimensional qudit at
this point.

This MPS is not in canonical form, since the triv-
ial decomposition, Eq. (8), was used instead of the
SVD, Eq. (9). As such, nonlocal measurement of the
R was simulated by directly calculating its reduced
density matrix through Eq. (11), and upon accord-
ingly setting a value for R, entanglement is collapsed
to reduce space usage by performing a sweep outward
from R. Since the lower register is now separable at
this stage, it is removed from the MPS and the re-
maining upper register of 21 qubits encodes the state

[¢upper) in Eq. (3).
The quantum Fourier transform (QFT) was then
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performed in [14] by sequentially contracting qubits
together, eventually resulting in a 2%-dimensional
state vector of the upper register. Using this full con-
traction ultimately limits the size of an instance of
Shor’s algorithm that may be simulated. However, it
does scale well timewise with parallelism since decom-
positions are not required. Though in that case, for
these high-level simulations, the use of a distributed
discrete Fourier transform library [26] as a single oper-
ation on the fully contracted state vector should result
in greater performance.

A separate approach to simulating Shor’s algorithm
up to the lower-register measurement, making use of
a tree tensor network, is detailed in [22]. Due to the
strict linear layout of an MPS, this tree tensor network
more evenly represents the multipartite entanglement
induced by the controlled exponentiated U gates at
the cost of a more complicated series of tensor oper-
ations when performing basic tasks such as measure-
ment or applying nearest-neighbour gates. While [22]
elucidates how such a tree tensor network might be
converted to an MPS with a more even entanglement
distribution than in [14], we detail how such an MPS
might be generated solely through MPS operations.

5.2 Simulation optimisations

Instead of returning a state vector following a simula-
tion of Shor’s algorithm, which ultimately negates the
space savings made by using the MPS formalism, we
performed simulations of Shor’s algorithm as a sam-
pling problem where we only wish to sample measure-
ments according to the underlying probability distri-
bution resulting from the circuit. This method mimics
the process of obtaining results from an actual quan-
tum computer, and is therefore a task that may be
performed by both classical and quantum machines.
Furthermore, performing simulations in this way is
ideal for MPS since it mitigates the need to contract
to a state vector, and as the entanglement collapse
following a measurement reduces memory usage.

From the description of Shor’s algorithm in Sec. 2,
the coefficients in all quantum states prior to the QFT
are real. Therefore, we can approximately halve our
time and space requirements for this section by storing
our MPS elements as real scalars instead of complex
scalars of equal precision, and then later converting
to complex scalars prior to the QFT. These savings
come at an opportune time due to the amount of en-
tanglement before measurement of the lower register
R.

The centrepiece of our additional optimisations,
however, is to embed the lower-register qudit R within
our MPS. Whilst the static approach in the previous
section had qudits positioned in the order [B] : [4] :
[R] as in Fig. 2(a), this has a significant space disad-
vantage since A is not entangled to B, but the entan-
glement between B and R crosses through A and mul-

tiplies the Schmidt ranks within A by 5. Instead, we
have chosen to perform our simulations by position-
ing our partitions as [B] : [R] : [4] in our MPS as in
Fig. 2(b), which allows direct connectivity to R from
A and B simultaneously. With this dynamic layout,
the size of the MPS matrices for each of the a qubits
in A is reduced by a factor of 82 compared to the
static approach as seen by comparing Figs. 2(c) and
2(d), resulting from a factor of g for the left and right
bond indices of a matrix. Therefore, the dynamic
qudit layout refines classification of the difficulty in
simulating Shor’s algorithm to include the factors of
r, rather than just r per the static layout.

Since simulations should not depend on prior
knowledge of the values r, « or 3, our layout requires
us to dynamically detect the transition from qubits in
B to qubits in A when applying the controlled expo-
nentiated U gates. In Sec. 4, we noted that B was
entangled with R prior to the lower-register measure-
ment, and that the qubits within B were entangled
amongst one another. Therefore, as the controlled
exponentiated U gates are sequentially operated on
qubits in order of descending significance, the Schmidt
ranks with R will temporarily stop increasing (at a
value of §) when this amount of entanglement has
been reached. Only when we start operating on qubits
in A does the entanglement to R begin to increase
again, as seen in Fig. 2(c). By detecting this plateau
and subsequent rise in the Schmidt ranks, we can de-
tect the boundary between A and B and begin to
place qubits from A on the opposite side of R.

At this point, we also note from Eq. (15) that the
choice of a has probability at least one half to result in
the maximum « permitted by semiprime N. There-
fore, classical simulations exceeding a given memory
limit may be retried a constant number of times with
different values of a before this maximum « is ex-
pected to be observed. Furthermore, from Eq. (16),
when the choice of a results in the maximum «, A
is expected to contain 8/3 qubits across all choices
of N. In our dynamic qudit layout where the size of
each MPS matrix in A is reduced by a factor of 32,
this may result in significant space savings compared
to the static layout.

When sufficiently many controlled exponentiated
U gates have been operated to initialise the systems
[B] : [R], we perform a right sweep as required for the
local measurement of R. As each of the a qubits in
A is interacted with R, their Schmidt ranks toward
R must sequentially double to reach a lower-register
occupancy of r = 8 x 2%, given the contribution of
g from B. This is demonstrated in Fig. 2(d). Use
of the trivial decomposition Eq. (8) with careful nor-
malisation removes the need for the left sweep across
A. R may then be measured using Eq. (12). Sweeps
are then performed outward from this site to collapse
entanglement involving R and with R now separable,
it is removed to leave an MPS consisting of systems
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[B] : [4]. Since the only remaining entanglement ex-
ists between the qubits of B, the highest Schmidt rank
within the MPS at this stage is £, and the qubits of
A are completely separable at this point.

We then applied the linear nearest-neighbour
(LNN) circuit for the QFT to our remaining qubits,
as shown in Figs. 1(a) and 1(b). Since each con-
trolled phase gate is immediately followed by a SWAP
on the same qubits, we applied these as a combined
operation. We note that the structure of the LNN
QFT circuit allows us to measure any qubits that
no longer require further operations. By performing
these measurements as soon as possible and sweeping
afterwards, we help mitigate any extra entanglement
introduced during the progression of the QFT circuit.
The final result is a completely separable MPS, rather
than a full state vector, of the upper register corre-
sponding to a value distributed according to Eq. (4).

6 Benchmarks

l 7 « 8 Nproc U bmeas QFT  frotal Advantage (x)
13 3870 1 1935 4 118 24 288 420 4.5
16 48 10 105 163 3.2
14 8036 2 2009 4 146 38 585 769 4.6
16 58 15 205 278 3.3
15 16104 3 2013 4 157 48 970 1175 8.0

16 63 19 339 421

Table 1: Benchmarks for simulating Shor's algorithm with
our optimisations, with times for the exponentiated U gates,
measurement, and QFT listed in seconds. With nywoc cores,
we simulated the three cases [ = 13, N = 8189, a = 10;
l=14, N =16351, a =2; and [ = 15, N = 32663, a = 6,
and compared the total times to the static approach with
full state vector contraction presented in [14] to obtain the
relative advantage.

l T « ﬁ Tnode ty tmeas tQFT Lrotal
16 28140 2 7035 2 1538 353 4290 6181
17 57516 2 14379 24 1694 406 4544 6644
20 479568 4 29973 216 4271 1496 20236 26003

Table 2: Larger instances, this time across multiple nodes
of a supercomputer. Times for the various stages are again
listed in seconds. Each node has 24 cores and 64 GB of
RAM. With n,04e nodes, we simulated the three cases [ = 16,
N =56759, a=2;1=17, N =124631, a = 2; and [ = 20,
N = 961307, a = 5.

Our simulations were implemented using the Ele-
mental [27] library for distributed-memory linear al-
gebra, mainly due to its divide and conquer SVD
[28]. All results were obtained in double precision,
with 64 bit real scalars before the quantum Fourier
transform and 128 bit complex scalars during. Square
process grids were used and elements follow a two-
dimensional element-wise cyclic distribution.

We began by simulating Shor’s algorithm with the
same parameters (I, N,a) benchmarked in [14]. Our

results in Table 1 were obtained on a single Intel Xeon
E5-2683 v4 with a base core clock of 2.10 GHz, using
the Intel Parallel Studio XE suite for compilers and
intraprocess BLAS and LAPACK [29], and Open MPI
[30] for our MPT implementation. We also limited the
space usage for these results to 8 GB of RAM to show-
case our optimisations against the 16 GB required in
[14]. Despite using a processor of lower clock speed,
our implementation appears to result in a significant
overall performance increase.

The parameters (I, N, a) chosen in [14] produce val-
ues of r equal to its upper bound of lem(p — 1,¢ — 1)
from Eq. (14), since the static layout bases difficulty
on the size of r. Our dynamic approach classifies diffi-
culty according to the factors of r, especially the odd
factor 8 of r which is similar across the three cases in
Table 1. This is somewhat reflected in our results by
our increasing time advantage over the results of [14].

Though our individual timings for the application
of the exponentiated U gates and the QFT appear
slower than the results of [14], this is due to our ty
being used to record the time to perform the sweep
prior to lower-register measurement and us choosing
to use the LNN QFT with interleaved measurements
respectively. Our time savings made during the lower-
register measurement more than makes up for this.
Additionally, whilst [14] is able to claim 1/npy0c time
scaling in their results due to the parallelism of MPS
contraction, we relied more on MPS decomposition
through the SVD to keep our memory requirements
low. It would appear then that the SVD scales differ-
ently with np,0. since we do not observe 1/np0c time
scaling.

To benchmark a truly distributed implementation,
we also performed some simulations across multiple
nodes on Magnus [31], a Cray XC40 supercomputer
with 24 cores at 2.60 GHz and 64 GB of RAM per
node. Our results in Table 2 were run using the GNU
Compiler Collection suite for compilers, OpenBLAS
[32] for intranodal BLAS and LAPACK, and Cray’s
proprietary MPI implementation.

For our flagship 60-qubit I = 20 instance, we chose
the parameters N = 961307 and a = 5. These pa-
rameters were specifically chosen to highlight the dif-
ferences between the static and dynamic methods, by
having the maximum period r = 479568 permitted
by N, but with a = 4 higher than expected. Since r
here is relatively high, it would be infeasible to simu-
late this with the static method even if the final MPS
contraction was not performed. In our simulation, the
« = 4 qubits in A significantly decrease the amount of
resources required, just from an understanding of the
entangling properties of Shor’s algorithm. As such,
we were able to perform a high-level simulation of
sampling a measurement from Shor’s algorithm on 60
qubits using a total of 216 nodes, 5184 cores, and
13.824 TB of memory within 8 h. To the best of our
knowledge, this is the largest high-level simulation of
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Shor’s algorithm.

7 Conclusion

We performed classical simulations of Shor’s algo-
rithm as a sampling problem using a dynamic MPS
qudit layout. Compared to previous approaches that
relied on static qudit layouts, our approach better
maps the entanglement induced by the circuit for
Shor’s algorithm onto a system with linear connectiv-
ity as represented by an MPS. The use of this dynamic
layout also refines classification of the difficulty in sim-
ulating Shor’s algorithm not only to include the size
of the period r, but also its factors. Furthermore, by
simulating Shor’s algorithm as a sampling problem,
we were able to take advantage of measurement to
collapse entanglement within the MPS. This reduces
space usage during the quantum Fourier transform
with respect to contracting MPS matrices into a full
state vector.

In particular, we found that asymptotically, on av-
erage, the power of 2 that divides r is 8/3. This
number of qubits would become completely separable
following measurement of the lower register, greatly
reducing the simulation difficulty. We also note that
instances with semiprime N = pq such that p — 1 or
q — 1 is divisible by a high power of 2 are especially
easy to simulate if r does not possess a correspond-
ingly large odd factor.

Our optimisations resulted in significant time and
space savings for instances with up to 45 qubits when
compared to previous benchmarks using the static qu-
dit layout with full state-vector contraction. Through
the use of supercomputing resources, we were able to
simulate a 60-qubit instance of Shor’s algorithm with
high r, rendering it infeasible via the static approach.
In terms of the number of qubits, this represents one
of the largest simulations of a nontrivial quantum cir-
cuit ever performed.
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