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Analysis of non-premixed turbulent reacting flows

By ANDY D. LEONARD 1 .AND JAMES C. HILL 1

Studies of chemical reactions occurring in turbulent, flows are important in the

understanding of combustion and other applications. Some situations, hypersonic

reacting flows for example, are difficult to study experimentally and will benefit from

direct numerical simulations. Current numerical methods are limited in their ap-

plications due to the numerical resolution required to completely capture all length

scales but, despite the fact that "realistic" combustion cannot be solved completely,

numerical simulations can be used to give insight into the interaction between the

processes of turbulence and chemical reaction (Jou and Riley, 1987).

The objectives of this work were (1) to investigate the effects of turbulent motion

on the effects of chemical reaction to gain some insight on the interaction of tur-

bulence, molecular diffusion and chemical reaction to support modeling efforts, and

(2) to develop efficient strategies for evaluation of multi-point probability density

functions (pdfs) and develop other post-processing tools. For lack of time, only the

first objective was actually addressed.

A direct turbulence simulation spectral code (Rogallo 1981) was modified to in-

clude the effects of chemical reaction and applied to an initial value problem of

chemical reaction between non-premixed species. Preliminary results show the dis-

sipation microscale of the scalar variance to be independent of Damkohler number.

The influence of hydrodynamics on the instantaneous structure of the reaction was

investigated.

The specific problem under consideration is the isothermal, irreversible chemical

reaction of two initially segregated species, of the type

A+B_ P (1)

occurring in a decaying homogeneous isotropic turbulent flow. The concentration

of one reacting species follows the mass conservation equation

OA

O---t+ u. VA = DAV2A -- KAB (2)

and the turbulent velocity field obeys the Navier-Stokes equations

OU , 1

0--t-+ u- Vu = --Vp + _,V2u. (3)P

The reaction-rate coefficient, K, is constant, and so the situation can be thought of

as an isothermal diffusion flame. The turbulent velocity and the concentration of
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FIGURE 1. Schematic diagram of initial conditions for reactants A and B.

chemical species were all calculated using direct numerical simulation. A pseudo-

spectral method was used with aliasing errors removed. It was necessary to add

the term for chemical reaction in equation (2) to an existing program for the direct

simulation (Rogallo 1981; see also Lee and Reynolds 1985). The Courant-Freidricks-

Lewy stability criterion was appropriately modified to include the effect of reaction

on the scalar field equation, and some modifications were needed to obtain diagnos-

tics for the scalar field.

Two calculations were performed on a mesh of 64xf4x64 points. Three velocity

components and four scalar components were calculated in each simulation, includ-

ing the reactant species (denoted as A and B), the product species (denoted as P)

and the non-reacting species (denoted as 6'). Two different values of the reaction-

rate coefficients were used in the study. The Damkohler numbers (dimensionless

reaction-rate coefficients) based on the initial mean reactant concentration, turbu-

lence intensity and the integral velocity length scale were 10 and 2 for the two runs.

The Schrnidt number for all species was unity. The initial conditions for the reac-

tant species are illustrated in Figure 1. Initial values of A and C' were identical. The

turbulence was freely decaying from an arbitrarily chosen initial energy spectrum.
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FIGURE 2. Reaction term in equation (2), KAB, for t = 1.1 and Da = 10. The
contour interval is 0.2.

The initial Reynolds number based on the Taylor nficroscale was 24. Velocity fields

were initialized using random numbers scaled to fit a given energy spectrum that

was nearly Gaussian in form. The simulations were carried out for 400 steps for

the case with the higher reaction rate and for 300 steps for the case with the lower
reaction rate.

Modification of the program, small-scale calculations to verify the changes, and

running the 64x64x64 calculations required three weeks to complete. Several data

sets were saved with the full set of Fourier coefficients for the scalar and velocity

fields, so that the IRIS workstation and interactive graphics programs could be used

to examine the spatial dependence of the fields in physical space at a single value

of time. Many of the results are only qualitative at this writing.

Our proposal was to examine the local scalar dissipation rates and the local re-

action rates to determine the influence of vorticity or rate of strain on the reaction

and the structure of the scalar field. Consequently, the region where the reaction

occurs was the focus of attention. The location of this region is marked by the value

of the term KAB in equation (2) and is clearly shown in Figure 2. The region was
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FIGURE 3. Surface where the conserved scalar A - B equals zero.

also marked by the product species concentration and high values of the magni-

tude of the gradients of reactant species concentrations as the reaction was nearly

diffusion limiting, due to the high reaction rates. The reactant species, therefore,

remain highly segregated over the course of the reaction with sharp gradients in

the reaction zone. The thickness of the zone is about four grid points at the higher

Damkohler number. The reaction zone is distorted by the turbulent motion and

the reaction rate and product concentrations are not uniform within the reaction

zone. The regions of high reaction rate correlate only roughly with regions of high

product concentration.

An attempt was made to determine the influence of the hydrodynamics on the

structure of the reaction zone. Surfaces at which the concentration of the conserved

scalar A - B equals zero appear to be good indicators of the location of the reaction
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FIGURE 4. Vortex lines passing through points near one of the finger-like structures

in Figure 3.

zone. These surfaces show fingers of reactant pushing into the reaction zone (Figure

3). Vortex lines passing through a group of points located near one of the fingers

are shown in Figure 4. The vortex lines are suggestive of the idea that a vortex

ring is producing the finger by eduction, but the evidence is inconclusive and needs

more extensive investigation.

The results of the simulations supported earlier findings (Leonard and Hill, 1987)

that the dissipation mieroscale of the concentration fields is not greatly affected by

the Damkohler number (Table 1). Modeling the effects of dissipation is a weakness

of some theories, as the process is not local. These findings suggest that diffusive

effects can be treated reasonably well by correctly modeling an equivalent non-

reacting flow.

The work done at the summer program was a beginning of an effort to look closely

at the influence of hydrodynamics on the instantaneous structure of the reaction.

Previous work (Leonard and Hill, 1987) had looked primarily on volume-averaged

quantities to test closure theories (Toor 1969; Patterson, 1981). The effect of strain

rate on the reaction has yet to be investigated. Further work is planned for analysis



146 Leonard and Hill

Da hA )_A

te = 0 te = 1

0 1.46 1.02

2 1.46 1.00

10 1.46 0.94

Da = KAou'o/Lo A2A= 6a_/IVal _ te = Lo/u'o

Table 1. Effect of Da on dissipation microscale of reactant A.

of the simulations performed during the CTR summer program and for additional

simulations to study the effects of parameters such as different molecular diffusivi-

ties for reactant species, non-stoichiometric ratio of reactant concentrations, steady

(forced) turbulence, external mean shear or strain, and different initial velocity
conditions.
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