435 research outputs found

    Asymptotic statistics of the n-sided planar Poisson-Voronoi cell. I. Exact results

    Full text link
    We achieve a detailed understanding of the nn-sided planar Poisson-Voronoi cell in the limit of large nn. Let p_n{p}\_n be the probability for a cell to have nn sides. We construct the asymptotic expansion of logp_n\log {p}\_n up to terms that vanish as nn\to\infty. We obtain the statistics of the lengths of the perimeter segments and of the angles between adjoining segments: to leading order as nn\to\infty, and after appropriate scaling, these become independent random variables whose laws we determine; and to next order in 1/n1/n they have nontrivial long range correlations whose expressions we provide. The nn-sided cell tends towards a circle of radius (n/4\pi\lambda)^{\half}, where λ\lambda is the cell density; hence Lewis' law for the average area A_nA\_n of the nn-sided cell behaves as A_ncn/λA\_n \simeq cn/\lambda with c=1/4c=1/4. For nn\to\infty the cell perimeter, expressed as a function R(ϕ)R(\phi) of the polar angle ϕ\phi, satisfies d2R/dϕ2=F(ϕ)d^2 R/d\phi^2 = F(\phi), where FF is known Gaussian noise; we deduce from it the probability law for the perimeter's long wavelength deviations from circularity. Many other quantities related to the asymptotic cell shape become accessible to calculation.Comment: 54 pages, 3 figure

    Note on a q-modified central limit theorem

    Full text link
    A q-modified version of the central limit theorem due to Umarov et al. affirms that q-Gaussians are attractors under addition and rescaling of certain classes of strongly correlated random variables. The proof of this theorem rests on a nonlinear q-modified Fourier transform. By exhibiting an invariance property we show that this Fourier transform does not have an inverse. As a consequence, the theorem falls short of achieving its stated goal.Comment: 10 pages, no figure

    Some Open Points in Nonextensive Statistical Mechanics

    Full text link
    We present and discuss a list of some interesting points that are currently open in nonextensive statistical mechanics. Their analytical, numerical, experimental or observational advancement would naturally be very welcome.Comment: 30 pages including 6 figures. Invited paper to appear in the International Journal of Bifurcation and Chao

    Heuristic theory for many-faced d-dimensional Poisson-Voronoi cells

    Full text link
    We consider the d-dimensional Poisson-Voronoi tessellation and investigate the applicability of heuristic methods developed recently for two dimensions. Let p_n(d) be the probability that a cell have n neighbors (be `n-faced') and m_n(d) the average facedness of a cell adjacent to an n-faced cell. We obtain the leading order terms of the asymptotic large-n expansions for p_n(d) and m_n(3). It appears that, just as in dimension two, the Poisson-Voronoi tessellation violates Aboav's `linear law' also in dimension three. A confrontation of this statement with existing Monte Carlo work remains inconclusive. However, simulations upgraded to the level of present-day computer capacity will in principle be able to confirm (or invalidate) our theory.Comment: 17 pages, 6 figure

    Mapping the Expectations of the Dutch Strategic Partnerships for Lobby and Advocacy

    Get PDF

    Mapping the Expectations of the Dutch Strategic Partnerships for Lobby and Advocacy

    Get PDF

    Frozen shuffle update for an asymmetric exclusion process on a ring

    Full text link
    We introduce a new rule of motion for a totally asymmetric exclusion process (TASEP) representing pedestrian traffic on a lattice. Its characteristic feature is that the positions of the pedestrians, modeled as hard-core particles, are updated in a fixed predefined order, determined by a phase attached to each of them. We investigate this model analytically and by Monte Carlo simulation on a one-dimensional lattice with periodic boundary conditions. At a critical value of the particle density a transition occurs from a phase with `free flow' to one with `jammed flow'. We are able to analytically predict the current-density diagram for the infinite system and to find the scaling function that describes the finite size rounding at the transition point.Comment: 16 page

    The perimeter of large planar Voronoi cells: a double-stranded random walk

    Full text link
    Let p_np\_n be the probability for a planar Poisson-Voronoi cell to have exactly nn sides. We construct the asymptotic expansion of logp_n\log p\_n up to terms that vanish as nn\to\infty. We show that {\it two independent biased random walks} executed by the polar angle determine the trajectory of the cell perimeter. We find the limit distribution of (i) the angle between two successive vertex vectors, and (ii) the one between two successive perimeter segments. We obtain the probability law for the perimeter's long wavelength deviations from circularity. We prove Lewis' law and show that it has coefficient 1/4.Comment: Slightly extended version; journal reference adde

    Single-site approximation for reaction-diffusion processes

    Full text link
    We consider the branching and annihilating random walk A2AA\to 2A and 2A02A\to 0 with reaction rates σ\sigma and λ\lambda, respectively, and hopping rate DD, and study the phase diagram in the (λ/D,σ/D)(\lambda/D,\sigma/D) plane. According to standard mean-field theory, this system is in an active state for all σ/D>0\sigma/D>0, and perturbative renormalization suggests that this mean-field result is valid for d>2d >2; however, nonperturbative renormalization predicts that for all dd there is a phase transition line to an absorbing state in the (λ/D,σ/D)(\lambda/D,\sigma/D) plane. We show here that a simple single-site approximation reproduces with minimal effort the nonperturbative phase diagram both qualitatively and quantitatively for all dimensions d>2d>2. We expect the approach to be useful for other reaction-diffusion processes involving absorbing state transitions.Comment: 15 pages, 2 figures, published versio
    corecore