198 research outputs found

    Assessment of preoperative accelerated radiotherapy and chemotherapy in stage IIIa (N2) non-small-cell lung cancer

    Get PDF
    AbstractForty patients with N2 non-small-cell lung cancer (stage IIIA), as determined by mediastinoscopy, were entered into a preoperative neoadjuvant study of chemotherapy (platinum, 5-fluorouracil, vinblastine) and accelerated radiotherapy (150 cGy twice per day for 7 days) for two cycles. Surgical resection was then performed and followed up with an additional cycle of chemotherapy and radiotherapy. All patients completed preoperative therapy. A major clinical response was seen in 87% of patients. Thirty-five patients underwent resection (one preoperative death, one refused operation, one had deterioration of pulmonary function, and two had pleural metastases). Operative mortality rate was 5.7% (2/35). Sixty percent of patients had no complications. Major complications included pulmonary emboli (three), pneumonia (two), and myocardial infarction (one). Downstaging was seen in 46% of patients, with two patients (5.7%) having no evidence of tumor in the specimen, five patients having sterilization of all lymph nodes, and nine patients having sterilization of mediastinal nodes but positive N1 nodes. Median survival of 40 patients was 28 months, with a projected 5-year survival of 43%. Patients with downstaged disease had statistically significant improved survival compared with patients whose disease was not downstaged. (J THORAC CARDIOVASC SURG 1996;111:123-33

    Enhancing Student Interest in the Agricultural Sciences through Aquaponics

    Get PDF
    ABSTRACT Educators in grades K-16 have recently placed renewed interest in experiential learning activities for teaching science and mathematics. Agriculture offers numerous authentic activities that can serve as meaningful contexts for teaching and learning. The AgriScience Education Project at the University of Arkansas was established to develop and disseminate agriculturally related teaching and learning materials and activities that teachers can use to teach science and mathematics. The objective of this paper is to describe the Aquaponics in the Classroom program, one of the most successful components of the AgriScience Education Project. Teachers participating in this program receive a classroom-scale aquaponics unit, a packet of printed instructional materials, and a set of student laboratory activities that use aquaponics as a context for teaching and learning science and mathematics. The project has helped teachers of kindergarten through high school classes create aquaponics programs. Primary interest has been from teachers at the middle-school and junior high school grade levels

    Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    Full text link
    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets entitled Neutrino Geophysics Added final corrections for publicatio

    Characterization of AKT independent effects of the synthetic AKT inhibitors SH-5 and SH-6 using an integrated approach combining transcriptomic profiling and signaling pathway perturbations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signal transduction processes mediated by phosphatidyl inositol phosphates affect a broad range of cellular processes such as cell cycle progression, migration and cell survival. The protein kinase AKT is one of the major effectors in this signaling network. Chronic AKT activation contributes to oncogenic transformation and tumor development. Therefore, analogs of phosphatidyl inositol phosphates (PIAs) were designed as new small drugs to block AKT activity for cancer treatment. Here we characterize the biological effects of the PIAs SH-5 and SH-6 in colorectal cancer cell lines.</p> <p>Methods</p> <p>Serum-starved or serum-supplemented human colorectal cancer cell lines SW480, HT29 and HCT116 were exposed to SH-5 and SH-6. AKT activation was determined by western blotting. Cell viability was assessed using a colorimetric XTT-based assay, apoptosis and cell cycle changes were monitored by FACS analysis. The dynamics of cell morphology alterations was evaluated by confocal and time-lapse microscopy. Transcriptional changes due to inhibitor treatment were analyzed using Affymetrix HG-U133A microarrays and RT-PCR.</p> <p>Results</p> <p>While the PIAs clearly reduce AKT phosphorylation in serum starved cells, we did not observe a significant reduction under serum supplemented conditions, giving us the opportunity to analyze AKT independent effects of these compounds. Both inhibitors induce broadly the same morphological alterations, in particular changes in cell shape and formation of intracellular vesicles. Moreover, we observed the induction of binucleated cells specifically in the SW480 cell line. Gene expression analysis revealed transcriptional alterations, which are mostly cell line specific. In accordance to the phenotype we found a gene group associated with mitosis and spindle organization down regulated in SW480 cells, but not in the other cell lines. A bioinformatics analysis using the Connectivity Map linked the gene expression pattern of the inhibitor treated SW480 cells to PKC signaling. Using confocal laser scanning microscopy and time lapse recording we identified a specific defect in the last step of the cytokinesis as responsible for the binucleation.</p> <p>Conclusions</p> <p>The PIAs SH-5 and SH-6 impinge on additional cellular targets apart from AKT in colorectal cancer cells. The effects are mostly cell line specific and have an influence at the outcome of the treatment. In view of potential clinical trials it will be necessary to take these diverse effects into consideration to optimize patient treatment.</p

    Overhaul and Installation of the ICARUS-T600 Liquid Argon TPC Electronics for the FNAL Short Baseline Neutrino Program

    Full text link
    The ICARUS T600 liquid argon (LAr) time projection chamber (TPC) underwent a major overhaul at CERN in 2016-2017 to prepare for the operation at FNAL in the Short Baseline Neutrino (SBN) program. This included a major upgrade of the photo-multiplier system and of the TPC wire read-out electronics. The full TPC wire read-out electronics together with the new wire biasing and interconnection scheme are described. The design of a new signal feed-through flange is also a fundamental piece of this overhaul whose major feature is the integration of all electronics components onto the signal flange. Initial functionality tests of the full TPC electronics chain installed in the T600 detector at FNAL are also described

    First Double-Differential Measurement of Kinematic Imbalance in Neutrino Interactions with the MicroBooNE Detector

    Get PDF
    We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved

    Multidifferential cross section measurements of νμ -argon quasielasticlike reactions with the MicroBooNE detector

    Get PDF
    We report on a flux-integrated multidifferential measurement of charged-current muon neutrino scattering on argon with one muon and one proton in the final state using the Booster Neutrino Beam and MicroBooNE detector at Fermi National Accelerator Laboratory. The data are studied as a function of various kinematic imbalance variables and of a neutrino energy estimator, and are compared to a number of event generator predictions. We find that the measured cross sections in different phase-space regions are sensitive to nuclear effects. Our results provide precision data to test and improve the neutrino-nucleus interaction models needed to perform high-accuracy oscillation analyses. Specific regions of phase space are identified where further model refinements are most needed
    • …
    corecore