192 research outputs found
Rock Bass Learn to Associate Food with a Visual Cue and Remember the Association when Food is Absent
We explored the foraging ability of rock bass (Ambloplites rupestris) by testing three hypotheses consistent with the predictions of optimal foraging theory: 1) fish can learn to associate food with a visual cue; 2) trained fish will go to a visual cue faster than untrained fish; and 3) over time, without the reinforcement of food, trained fish will exhibit a diminished response to a visual cue. Our results supported each hypothesis. During the first 96 h of testing, 88 to 100% of trained fish went to the visual cue first; 50% of the trained fish went to the visual cue first after 312 h. None of the untrained fish went to the visual cue first. Trained fish went to the visual cue significantly faster (11.0 cm sec-1 ) than untrained (1.6 cm sec-1 ) fish. There were no significant differences in velocity to the visual cue among the times tested for control fish (0.8 to 2.6 cm sec-1 ). However, velocities of experimental fish were significantly higher from 0 to 24 h (16.7 cm sec-1 ) than from 48 to 312 h (6.7 cm sec-1 ), suggesting that they began extinguishing their responses as the time since the last food reward associated with the cue increased. If rock bass use these abilities in their natural habitats, they likely improve their foraging efficiency and, thus, their overall fitness.
(No actual Publication Date listed on Report
Neurochemistry of Attention-Deficit/Hyperactivity Disorder (ADHD)
There are numerous books about Attention-Deficit/Hyperactivity Disorder (ADHD) on the market. These books range from being very nontechnical, geared towards elementary educators and parents, to highly technical, geared towards medical and mental health professionals. To complicate matters further, the manner in which ADHD is defined and diagnosed has recently changed with the release of the DSM-V in 2013, which makes even relatively recent texts out-of-date. This Creative Inquiry project involves research into the most recent data on the neurochemistry behind what causes ADHD and comorbid conditions, as well as the neurochemistry of how drugs used to treat these conditions work to affect patient mental health. The goal of this project is to write and publish a book that begins with simple descriptions of these processes and builds to more technical language, providing parents and teachers with the ability to become experts in ADHD without a preexisting background in science
Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations
This study presents a historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta-analysis explores 3929 weight–length relationships of the type W = aLb for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b = 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean = 100aLb−3. Relative weight Wrm = 100W/(amLbm) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given
IL-18 neutralization ameliorates obstruction-induced epithelial–mesenchymal transition and renal fibrosis
Ureteral obstruction results in renal fibrosis in part due to inflammatory injury. The role of interleukin-18 (IL-18), an important mediator of inflammation, in the genesis of renal fibrosis was studied using transgenic mice overexpressing human IL-18-binding protein. In addition, HK-2 cells were analyzed following direct exposure to IL-18 compared to control media. Two weeks after ureteral obstruction, the kidneys of wild-type mice had a significant increase in IL-18 production, collagen deposition, α-smooth muscle actin and RhoA expression, fibroblast and macrophage accumulation, chemokine expression, and transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) production, whereas E-cadherin expression was simultaneously decreased. The transgenic mice with neutralized IL-18 activity exhibited significant reductions in these indicators of obstruction-induced renal fibrosis and epithelial– mesenchymal transition, without demonstrating alterations in TGF-β1 or TNF-α activity. Similarly, the HK-2 cells exhibited increased α-smooth muscle actin expression and collagen production, and decreased E-cadherin expression in response to IL-18 stimulation without alterations in TNF-α or TGF-β1 activity. Our study demonstrates that IL-18 is a significant mediator of obstruction-induced renal fibrosis and epithelial– mesenchymal transition independent of downstream TGF-β1 or TNF-α production
Comparison of non-surgical treatment methods for patients with lumbar spinal stenosis: Protocol for a randomized controlled trial
Background: Lumbar spinal stenosis is the most common reason for spinal surgery in older adults. Previous studies have shown that surgery is effective for severe cases of stenosis, but many patients with mild to moderate symptoms are not surgical candidates. These patients and their providers are seeking effective non-surgical treatment methods to manage their symptoms; yet there is a paucity of comparative effectiveness research in this area. This knowledge gap has hindered the development of clinical practice guidelines for non-surgical treatment approaches for lumbar spinal stenosis.Methods/design: This study is a prospective randomized controlled clinical trial that will be conducted from November 2013 through October 2016. The sample will consist of 180 older adults (>60 years) who have both an anatomic diagnosis of stenosis confirmed by diagnostic imaging, and signs/symptoms consistent with a clinical diagnosis of lumbar spinal stenosis confirmed by clinical examination. Eligible subjects will be randomized into one of three pragmatic treatment groups: 1) usual medical care; 2) individualized manual therapy and rehabilitative exercise; or 3) community-based group exercise. All subjects will be treated for a 6-week course of care. The primary subjective outcome is the Swiss Spinal Stenosis Questionnaire, a self-reported measure of pain/function. The primary objective outcome is the Self-Paced Walking Test, a measure of walking capacity. The secondary objective outcome will be a measurement of physical activity during activities of daily living, using the SenseWear Armband, a portable device to be worn on the upper arm for one week. The primary analysis will use linear mixed models to compare the main effects of each treatment group on the changes in each outcome measure. Secondary analyses will include a responder analysis by group and an exploratory analysis of potential baseline predictors of treatment outcome.Discussion: Our study should provide evidence that helps to inform patients and providers about the clinical benefits of three non-surgical approaches to the management of lumbar spinal stenosis symptoms.Trial registration: ClinicalTrials.gov identifier: NCT01943435. © 2014 Schneider et al.; licensee BioMed Central Ltd
An ecological correction to marine reserves boundaries in the US Virgin Islands
Marine protected areas (MPAs) are important tools for management of marine ecosystems. While desired, ecological and biological criteria are not always feasible to consider when establishing protected areas. In 2001, the Virgin Islands Coral Reef National Monument (VICR) in St. John, US Virgin Islands was established by Executive Order. VICR boundaries were based on administrative determination of Territorial Sea boundaries and land ownership at the time of the Territorial Submerged Lands Act of 1974. VICR prohibits almost all fishing and other extractive uses. Surveys of habitat and fishes inside and outside of VICR were conducted in 2002-07. Based on these surveys, areas outside VICR had significantly more hard corals; greater habitat complexity; and greater richness, abundance and biomass of reef fishes than areas within VICR, further supporting results from 2002-2004 (Monaco et al., 2007). The administrative (political) process used to establish VICR did not allow a robust ecological characterization of the area to determine the boundaries of the MPA. Efforts are underway to increase amounts of complex reef habitat within VICR by swapping a part of VICR that has little coral reef habitat for a Territorially-owned area within VICR that contains a coral reef with higher coral cover
Recommended from our members
A scalable helium gas cooling system for trapped-ion applications
Microfabricated ion-trap devices offer a promising pathway towards scalable quantum computing. Research efforts have begun to focus on the engineering challenges associated with developing large-scale ion-trap arrays and networks. However, increasing the size of the array and integrating on-chip electronics can drastically increase the power dissipation within the ion-trap chips. This leads to an increase in the operating temperature of the ion-trap and limits the device performance. Therefore, effective thermal management is an essential consideration for any large-scale architecture. Presented here is the development of a modular cooling system designed for use with multiple ion-trapping experiments simultaneously. The system includes an extensible cryostat that permits scaling of the cooling power to meet the demands of a large network. Following experimental testing on two independent ion-trap experiments, the cooling system is expected to deliver a net cooling power of 111 W at ∼70 K to up to four experiments. The cooling system is a step towards meeting the practical challenges of operating large-scale quantum computers with many qubits
A high-fidelity quantum matter-link between ion-trap microchip modules
System scalability is fundamental for large-scale quantum computers (QCs) and is being pursued over a variety of hardware platforms. For QCs based on trapped ions, architectures such as the quantum charge-coupled device (QCCD) are used to scale the number of qubits on a single device. However, the number of ions that can be hosted on a single quantum computing module is limited by the size of the chip being used. Therefore, a modular approach is of critical importance and requires quantum connections between individual modules. Here, we present the demonstration of a quantum matter-link in which ion qubits are transferred between adjacent QC modules. Ion transport between adjacent modules is realised at a rate of 2424 s−1 and with an infidelity associated with ion loss during transport below 7 × 10−8. Furthermore, we show that the link does not measurably impact the phase coherence of the qubit. The quantum matter-link constitutes a practical mechanism for the interconnection of QCCD devices. Our work will facilitate the implementation of modular QCs capable of fault-tolerant utility-scale quantum computation
- …