1,264 research outputs found
Spectral slicing X-ray telescope with variable magnification
A telescope for viewing high frequency radiation (soft X-ray, extreme ultraviolet) is described. This telescope has a long focal length with a selection of magnifications despite a short housing. Light enters the telescope and is reflected by the telescope's primary optical system to one of several secondary mirrors at different locations on a movable frame. The secondary mirrors have varying degrees of magnification and select narrow spectral slices of the incident radiation. Thus, both the magnification and effective focal length field of view and wavelength can be altered by repositioning the moving frame. Configurations for spaceborne applications are discussed
Evidence linking coronal mass ejections with interplanetary magnetic clouds
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients
Max '91: Flare research at the next solar maximum
To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided
The Extended Range X-Ray Telescope center director's discretionary fund report
An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD
A luciferase-based quick potency assay to predict chondrogenic differentiation.
Chondrogenic differentiation of adipose derived stem cells (ASC) is challenging but highly promising for cartilage repair. Large donor variability of chondrogenic differentiation potential raises the risk for transplantation of cells with reduced efficacy and a low chondrogenic potential. Therefore quick potency assays are required in order to control the potency of the isolated cells before cell transplantation. Current in vitro methods to analyze the differentiation potential are time consuming and thus, a novel enhancer and tissue-specific promoter combination was employed for the detection of chondrogenic differentiation of ASC in a novel quick potency bioassay. Human primary ASC were co-transfected with the Metridia luciferase based collagen type II reporter gene pCMVE_ACDCII-MetLuc together with a Renilla control plasmid and analyzed for their chondrogenic potential. On day 3 after chondrogenic induction, the luciferase activity was induced in all tested donors under three dimensional (3D) culture conditions and in a second approach also under 2D culture conditions. With our newly developed quick potency bioassay we can determine chondrogenic potential already after 3 days of chondrogenic induction and under 2D culture conditions. This will enhance the efficiency of testing cell functionality, which should allow in the future to predict the suitability of cells derived from individual patients for cell therapies, in a very short time and at low costs
Tests of Dynamical Flux Emergence as a Mechanism for CME Initiation
Current coronal mass ejection (CME) models set their lower boundary to be in
the lower corona. They do not calculate accurately the transfer of free
magnetic energy from the convection zone to the magnetically dominated corona
because they model the effects of flux emergence using kinematic boundary
conditions or simply assume the appearance of flux at these heights. We test
the importance of including dynamical flux emergence in CME modeling by
simulating, in 2.5D, the emergence of sub-surface flux tubes into different
coronal magnetic field configurations. We investigate how much free magnetic
energy, in the form of shear magnetic field, is transported from the convection
zone to the corona, and whether dynamical flux emergence can drive CMEs. We
find that multiple coronal flux ropes can be formed during flux emergence, and
although they carry some shear field into the corona, the majority of shear
field is confined to the lower atmosphere. Less than 10% of the magnetic energy
in the corona is in the shear field, and this, combined with the fact that the
coronal flux ropes bring up significant dense material, means that they do not
erupt. Our results have significant implications for all CME models which rely
on the transfer of free magnetic energy from the lower atmosphere into the
corona but which do not explicitly model this transfer. Such studies of flux
emergence and CMEs are timely, as we have new capabilities to observe this with
Hinode and SDO, and therefore to test the models against observations
Turbulent Coronal Heating Mechanisms: Coupling of Dynamics and Thermodynamics
Context. Photospheric motions shuffle the footpoints of the strong axial
magnetic field that threads coronal loops giving rise to turbulent nonlinear
dynamics characterized by the continuous formation and dissipation of
field-aligned current sheets where energy is deposited at small-scales and the
heating occurs. Previous studies show that current sheets thickness is orders
of magnitude smaller than current state of the art observational resolution
(~700 km).
Aim. In order to understand coronal heating and interpret correctly
observations it is crucial to study the thermodynamics of such a system where
energy is deposited at unresolved small-scales.
Methods. Fully compressible three-dimensional magnetohydrodynamic simulations
are carried out to understand the thermodynamics of coronal heating in the
magnetically confined solar corona.
Results. We show that temperature is highly structured at scales below
observational resolution and nonhomogeneously distributed so that only a
fraction of the coronal mass and volume gets heated at each time.
Conclusions. This is a multi-thermal system where hotter and cooler plasma
strands are found one next to the other also at sub-resolution scales and
exhibit a temporal dynamics.Comment: A&A Letter, in pres
The effect of the solar corona on the attenuation of small-amplitude prominence oscillations. I. Longitudinal magnetic field
Context. One of the typical features shown by observations of solar
prominence oscillations is that they are damped in time and that the values of
the damping times are usually between one and three times the corresponding
oscillatory period. However, the mechanism responsible for the attenuation is
still not well-known. Aims. Thermal conduction, optically thin or thick
radiation and heating are taken into account in the energy equation, and their
role on the attenuation of prominence oscillations is evaluated. Methods. The
dispersion relation for linear non-adiabatic magnetoacoustic waves is derived
considering an equilibrium made of a prominence plasma slab embedded in an
unbounded corona. The magnetic field is orientated along the direction parallel
to the slab axis and has the same strength in all regions. By solving the
dispersion relation for a fixed wavenumber, a complex oscillatory frequency is
obtained, and the period and the damping time are computed. Results. The effect
of conduction and radiation losses is different for each magnetoacoustic mode
and depends on the wavenumber. In the observed range of wavelengths the
internal slow mode is attenuated by radiation from the prominence plasma, the
fast mode by the combination of prominence radiation and coronal conduction and
the external slow mode by coronal conduction. The consideration of the external
corona is of paramount importance in the case of the fast and external slow
modes, whereas it does not affect the internal slow modes at all. Conclusions.
Non-adiabatic effects are efficient damping mechanisms for magnetoacoustic
modes, and the values of the obtained damping times are compatible with those
observed.Comment: Accepted in A&
The Writing of Architecture: Mnemosyne and the Wax Tablet
In the search for nature - for the true origin and order of things - we will find in architecture the origins of memory and the invention of culture. Architecture is the resistance to forgetfulness..
- …
