170 research outputs found
Transitioning to multi-site : a model for transitioning Wesley United Methodist Church to a multi-site church
https://place.asburyseminary.edu/ecommonsatsdissertations/2246/thumbnail.jp
The Highland Soldier In Georgia And Florida: A Case Study Of Scottish Highlanders In British Military Service, 1739-1748
This study examined Scottish Highlanders who defended the southern border of British territory in the North American theater of the War of the Austrian Succession (1739-1748). A framework was established to show how Highlanders were deployed by the English between 1745 and 1815 as a way of eradicating radical Jacobite elements from the Scottish Highlands and utilizing their supposed natural superiority in combat. The case study of these Highlanders who fought in Georgia and Florida demonstrated that the English were already employing Highlanders in a similar fashion in North America during the 1730s and 1740s. British government sources and correspondence of colonial officials and military officers were used to find the common Highlander\u27s reactions to fighting on this particular frontier of the Empire. It was discovered that by reading against what these officials wrote and said was the voice of the Highlander found, in addition to confirming a period of misrepresentation of Highland manpower in the colony of Georgia during the War of Jenkins\u27 Ear that adhered to the analytical framework established
Flux penetration and expulsion in thin superconducting disks
Using an expansion of the order parameter over the eigenfunctions of the
linearized first Ginzburg-Landau (GL) equation, we obtain numerically the
saddle points of the free energy separating the stable states with different
number of vortices. In contrast to known surface and geometrical barrier
models, we find that in a wide range of magnetic fields below the penetration
field, the saddle point state for flux penetration into a disk does not
correspond to a vortex located nearby the sample boundary, but to a region of
suppressed superconductivity at the disk edge with no winding of the current,
and which is {\it a nucleus} for the following vortex creation. The height of
this {\it nucleation barrier}, which determines the time of flux penetration,
is calculated for different disk radii and magnetic fields.Comment: Accepted for publication in Physical Review Letter
CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing
We present cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) which spans 154 deg^2 in five optical bands. Using accurate photometric redshifts and measured shapes for 4.2 million galaxies between redshifts of 0.2 and 1.3, we compute the 2D cosmic shear correlation function over angular scales ranging between 0.8 and 350 arcmin. Using non-linear models of the dark-matter power spectrum, we constrain cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. The best constraints from lensing alone are obtained for the small-scale density-fluctuations amplitude σ_8 scaled with the total matter density Ωm. For a flat Λcold dark matter (ΛCDM) model we obtain σ_8(Ω_m/0.27)0.6 = 0.79 ± 0.03.
We combine the CFHTLenS data with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), baryonic acoustic oscillations (BAO): SDSS-III (BOSS) and a Hubble Space Telescope distance-ladder prior on the Hubble constant to get joint constraints. For a flat ΛCDM model, we find Ω_m = 0.283 ± 0.010 and σ_8 = 0.813 ± 0.014. In the case of a curved wCDM universe, we obtain Ω_m = 0.27 ± 0.03, σ_8 = 0.83 ± 0.04, w0 = −1.10 ± 0.15 and Ω_K = 0.006^(+0.006)_(− 0.004).
We calculate the Bayesian evidence to compare flat and curved ΛCDM and dark-energy CDM models. From the combination of all four probes, we find models with curvature to be at moderately disfavoured with respect to the flat case. A simple dark-energy model is indistinguishable from ΛCDM. Our results therefore do not necessitate any deviations from the standard cosmological model
The dependence of intrinsic alignment of galaxies on wavelength using KiDS and GAMA
The outer regions of galaxies are more susceptible to the tidal interactions that lead to intrinsic alignments of galaxies. The resulting alignment signal may therefore depend on the passband if the colours of galaxies vary spatially. To quantify this, we measured the shapes of galaxies with spectroscopic redshifts from the GAMA survey using deep gri imaging data from the KiloDegree Survey. The performance of the moment-based shape measurement algorithm DEIMOS was assessed using dedicated image simulations, which showed that the ellipticities could be determined with an accuracy better than 1% in all bands. Additional tests for potential systematic errors did not reveal any issues. We measure a significant difference of the alignment signal between the g, r and i-band observations. This difference exceeds the amplitude of the linear alignment model on scales below 2 Mpc h⁻¹. Separating the sample into central/satellite and red/blue galaxies, we find that the difference is dominated by red satellite galaxies
The environmental dependence of the stellar mass function at z ~ 1: Comparing cluster and field between the GCLASS and UltraVISTA surveys
Aims. We present the stellar mass functions (SMFs) of star-forming and quiescent galaxies from observations of ten rich, red-sequence selected, clusters in the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS) in the redshift range 0.86 < z < 1.34. We compare our results with field measurements at similar redshifts using data from a K_s-band selected catalogue of the COSMOS/UltraVISTA field.
Methods. We construct a K_s-band selected multi-colour catalogue for the clusters in eleven photometric bands covering u-8 μm, and estimate photometric redshifts and stellar masses using spectral energy distribution fitting techniques. To correct for interlopers in our cluster sample, we use the deep spectroscopic component of GCLASS, which contains spectra for 1282 identified cluster and field galaxies taken with Gemini/GMOS. This allowed us to correct cluster number counts from a photometric selection for false positive and false negative identifications. Both the photometric and spectroscopic samples are sufficiently deep that we can probe the SMF down to masses of 10^10 M_⊙.
Results. We distinguish between star-forming and quiescent galaxies using the rest-frame U − V versus V − J diagram, and find that the best-fitting Schechter parameters α and M∗ are similar within the uncertainties for these galaxy types within the different environments. However, there is a significant difference in the shape and normalisation of the total SMF between the clusters and the field sample. This difference in the total SMF is primarily a reflection of the increased fraction of quiescent galaxies in high-density environments. We apply a simple quenching model that includes components of mass- and environment-driven quenching, and find that in this picture 45^(+4)_(-3)% of the star-forming galaxies, which normally would be forming stars in the field, are quenched by the cluster.
Conclusions. If galaxies in clusters and the field quench their star formation via different mechanisms, these processes have to conspire in such a way that the shapes of the quiescent and star-forming SMF remain similar in these different environments
Fibrodysplasia Ossificans Progressiva: what have we achieved and where are we now? follow-up to the 2015 Lorentz Workshop
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After this, the pathophysiology of FOP has been further elucidated through the efforts of research groups worldwide. In 2015, a workshop was held to gather these groups and discuss the new challenges in FOP research. Here we present an overview and update on these topics
Recommended from our members
Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels
To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions
- …