10 research outputs found

    The impact of transport across the polar vortex edge on Match ozone loss estimates

    Get PDF
    The Match method for the quantification of polar chemical ozone loss is investigated mainly with respect to the impact of the transport of air masses across the vortex edge. For the winter 2002/03, we show that significant transport across the vortex edge occurred and was simulated by the Chemical Lagrangian Model of the Stratosphere. In-situ observations of inert tracers and ozone from HAGAR on the Geophysica aircraft and balloon-borne sondes, and remote observations from MIPAS on the ENVISAT satellite were reproduced well by CLaMS. The model even reproduced a small vortex remnant that remained a distinct feature until June 2003 and was also observed in-situ by a balloon-borne whole air sampler. We use this CLaMS simulation to quantify the impact of transport across the vortex edge on ozone loss estimates from the Match method. We show that a time integration of the determined vortex average ozone loss rates, as performed in Match, results in a larger ozone loss than the polar vortex average ozone loss in CLaMS. The determination of the Match ozone loss rates is also influenced by the transport of air across the vortex edge. We use the model to investigate how the sampling of the ozone sondes on which Match is based represents the vortex average ozone loss rate. Both the time integration of ozone loss and the determination of ozone loss rates for Match are evaluated using the winter 2002/2003 CLaMS simulation. These impacts can explain the majority of the differences between CLaMS and Match column ozone loss. While the investigated effects somewhat reduce the apparent discrepancy in January ozone loss rates reported earlier, a distinct discrepancy between simulations and Match remains. However, its contribution to the accumulated ozone loss over the winter is not large

    Determination of layer morphology of rough layers in organic light emitting diodes by X‐ray reflectivity

    No full text
    Abstract X‐ray reflectivity (XRR) has been proven to be a useful tool to investigate thin layers as well as buried interfaces in stacks built of very thin layers. Nevertheless, x‐ray reflectivity measurements are limited by the roughness of the layers and interfaces as the roughness destroys the interference structure, the so‐called Kiessig fringes. As investigations of thin layers in organic light emitting devices (OLEDs) are still subject of research and development, the focus of this paper is the investigation of a layer of indium tin oxide (ITO) which serves as transparent anode material in OLEDs. Due to the fabrication process, ITO shows rough surface structures, so‐called spikes, hindering the determination of the ITO layer thickness and roughness in XRR measurements. In this paper, it is theoretically and experimentally proven that a smoothing layer on the ITO enables the determination of the buried ITO layer thickness and roughness as well as the density of the spikes. Furthermore, a sputtered aluminum layer (e.g. cathode material) showing spikes in atomic force microscopy covered with a smoothing layer reveals Kiessig fringes allowing the determination of the density of buried spikes. In general, it is shown that a smoothing layer on a rough surface enhances the sensitivity of x‐ray reflectivity measurements

    Influence of dielectric layer thickness and roughness on topographic effects in magnetic force microscopy

    No full text
    Magnetic force microscopy (MFM) has become a widely used tool for the characterization of magnetic properties. However, the magnetic signal can be overlapped by additional forces acting on the tip such as electrostatic forces. In this work the possibility to reduce capacitive coupling effects between tip and substrate is discussed in relation to the thickness of a dielectric layer introduced in the system. Single superparamagnetic iron oxide nanoparticles (SPIONs) are used as a model system, because their magnetic signal is contrariwise to the signal due to capacitive coupling so that it is possible to distinguish between magnetic and electric force contributions. Introducing a dielectric layer between substrate and nanoparticle the capacitive coupling can be tuned and minimized for thick layers. Using the theory of capacitive coupling and the magnetic point dipole–dipole model we could theoretically explain and experimentally prove the phase signal for single superparamagnetic nanoparticles as a function of the layer thickness of the dielectric layer. Tuning the capacitive coupling by variation of the dielectric layer thickness between nanoparticle and substrate allows the distinction between the electric and the magnetic contributions to the MFM signal. The theory also predicts decreasing topographic effects in MFM signals due to surface roughness of dielectric films with increasing film thickness

    Magnetic Imaging of Encapsulated Superparamagnetic Nanoparticles by Data Fusion of Magnetic Force Microscopy and Atomic Force Microscopy Signals for Correction of Topographic Crosstalk

    No full text
    Encapsulated magnetic nanoparticles are of increasing interest for biomedical applications. However, up to now, it is still not possible to characterize their localized magnetic properties within the capsules. Magnetic Force Microscopy (MFM) has proved to be a suitable technique to image magnetic nanoparticles at ambient conditions revealing information about the spatial distribution and the magnetic properties of the nanoparticles simultaneously. However, MFM measurements on magnetic nanoparticles lead to falsifications of the magnetic MFM signal due to the topographic crosstalk. The origin of the topographic crosstalk in MFM has been proven to be capacitive coupling effects due to distance change between the substrate and tip measuring above the nanoparticle. In this paper, we present data fusion of the topography measurements of Atomic Force Microscopy (AFM) and the phase image of MFM measurements in combination with the theory of capacitive coupling in order to eliminate the topographic crosstalk in the phase image. This method offers a novel approach for the magnetic visualization of encapsulated magnetic nanoparticles

    Multi-center randomized controlled trial of cognitive treatment, placebo, oxybutynin, bladder training, and pelvic floor training in children with functional urinary incontinence

    No full text
    Objective Functional urinary incontinence causes considerable morbidity in 8.4% of school-age children, mainly girls. To compare oxybutynin, placebo, and bladder training in overactive bladder (OAB), and cognitive treatment and pelvic floor training in dysfunctional voiding (DV), a multi-center controlled trial was designed, the European Bladder Dysfunction Study. Methods Seventy girls and 27 boys with clinically diagnosed OAB and urge incontinence were randomly allocated to placebo, oxybutynin, or bladder training (branch I), and 89 girls and 16 boys with clinically diagnosed DV to either cognitive treatment or pelvic floor training (branch II). All children received standardized cognitive treatment, to which these interventions were added. The main outcome variable was daytime incontinence with/without urinary tract infections. Urodynamic studies were performed before and after treatment. Results In branch I, the 15% full response evolved to cure rates of 39% for placebo, 43% for oxybutynin, and 44% for bladder training. In branch II, the 25% full response evolved to cure rates of 52% for controls and 49% for pelvic floor training. Before treatment, detrusor overactivity (OAB) or pelvic floor overactivity (DV) did not correlate with the clinical diagnosis. After treatment these urodynamic patterns occurred de novo in at least 20%. Conclusion The mismatch between urodynamic patterns and clinical symptoms explains why cognitive treatment was the key to success, not the added interventions. Unpredictable changes in urodynamic patterns over time, the response to cognitive treatment, and the gender-specific prevalence suggest social stress might be a cause for the symptoms, mediated by corticotropin-releasing factor signaling pathways. Neurourol. Urodynam. 33:482-487, 2014. (c) 2013 Wiley Periodicals, Inc

    The relevance of urodynamic studies for urge syndrome and dysfunctional voiding:A multicenter controlled trial in children

    No full text
    Purpose: The objective of this study was to compare prospectively, in urge syndrome and dysfunctional voiding, clinical patterns with urodynamic patterns, to assess changes in urodynamic patterns after treatment, and to correlate urodynamic patterns and parameters with treatment outcome. Materials and Methods: In the European Bladder Dysfunction Study 97 children with clinically diagnosed urge syndrome received standard treatment, to which was randomly added placebo, oxybutynin or bladder training with online feedback. In a separate branch 105 children with clinically diagnosed dysfunctional voiding were randomly allocated to standard treatment or standard treatment plus pelvic floor training with online feedback. In all children urodynamic studies were performed before and immediately after treatment. Results: In urge syndrome detrusor overactivity was present in 33% of cases before and 27% after treatment (of which 65% were de novo). Detrusor overactivity did not correlate with treatment outcome. In dysfunctional voiding increased pelvic floor activity during voiding, which was present in 67% of cases before and 56% after treatment (of which 45% were de novo), did not correlate with treatment outcome. In urge syndrome as well as in dysfunctional voiding neither maximum detrusor pressure during voiding, cystometric bladder capacity, bladder compliance nor free flow patterns correlated with treatment outcome. Conclusions: Neither detrusor overactivity nor increased pelvic floor activity during voiding correlated with treatment outcome. Standard treatment could be the first choice in urge syndrome as well as in dysfunctional voiding, reserving urodynamic studies for patients in whom this first approach fails
    corecore