18 research outputs found
Proteomic Profiling of Saliva and Tears in Radiated Head and Neck Cancer Patients as Compared to Primary Sjögren’s Syndrome Patients
Patients with head and neck cancer (HNC) and patients with primary Sjögren’s syndrome (pSS) may exhibit similar symptoms of dry mouth and dry eyes, as a result of radiotherapy (RT) or a consequence of disease progression. To identify the proteins that may serve as promising disease biomarkers, we analysed saliva and tears from 29 radiated HNC patients and 21 healthy controls, and saliva from 14 pSS patients by mass spectrometry-based proteomics. The study revealed several upregulated, and in some instances overlapping, proteins in the two patient groups. Histone H1.4 and neutrophil collagenase were upregulated in whole saliva of both patient groups, while caspase-14, histone H4, and protein S100-A9 were upregulated in HNC saliva only. In HCN tear fluid, the most highly upregulated protein was mucin-like protein 1. These overexpressed proteins in saliva and tears play central roles in inflammation, host cell injury, activation of reactive oxygen species, and tissue repair. In conclusion, the similarities and differences in overexpressed proteins detected in saliva from HNC and pSS patients may contribute to the overall understanding of the different pathophysiological mechanisms inducing dry mouth. Thus, the recurring proteins identified could possibly serve as future promising biomarkerspublishedVersio
Recommended from our members
The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren's-like disease
Sjogren's syndrome (SS) is a complex autoimmune disease that primarily affects salivary and lacrimal glands and is associated with high morbidity. Although the prevailing dogma is that immune system pathology drives SS, increasing evidence points to structural defects, including defective E-cadherin adhesion, to be involved in its etiology. We have shown that E-cadherin plays pivotal roles in the development of the mouse salivary submandibular gland (SMG) by organizing apical-basal polarity in acinar and ductal progenitors and by signaling survival for differentiating duct cells. Recently, E-cadherin junctions have been shown to interact with effectors of the Hippo signaling pathway, a core pathway regulating organ size, cell proliferation and differentiation. We now show that Hippo signaling is required for SMG branching morphogenesis and is involved in the pathophysiology of SS. During SMG development, a Hippo pathway effector, TAZ, becomes increasingly phosphorylated and associated with E-cadherin and α-catenin, consistent with the activation of Hippo signaling. Inhibition of Lats2, an upstream kinase that promotes TAZ phosphorylation, results in dysmorphogenesis of the SMG and impaired duct formation. SMGs from NOD mice, a mouse model for SS, phenocopy the Lats2-inhibited SMGs and exhibit a reduction in E-cadherin junctional components, including TAZ. Importantly, labial specimens from human SS patients display mislocalization of TAZ from junctional regions to the nucleus, coincident with accumulation of extracellular matrix components, fibronectin and CTGF, known downstream targets of TAZ. Our studies show that Hippo signaling plays a crucial role in SMG branching morphogenesis and provide evidence that defects in this pathway are associated with SS in humans
Localization of AQP5 during development of the mouse submandibular salivary gland
Aquaporin 5 (AQP5) is known to be central for salivary fluid secretion. A study of the temporal-spatial distribution of AQP5 during submandibular gland (SMG) development and in adult tissues might offer further clues to its unknown role during development. In the present work, SMGs from embryonic day (E) 14.5–18.5 and postnatal days (P) 0, 2, 5, 25, and 60 were immunostained for AQP5 and analyzed using light microscopy. Additional confocal and transmission electron microscopy were performed on P60 glands. Our results show that AQP5 expression first occurs in a scattered pattern in the late canalicular stage and becomes more prominent and organized in the terminal tubuli/pro-acinar cells towards birth. Additional apical membrane staining in the entire intralobular duct is found just prior to birth. During postnatal development, AQP5 is expressed in both the luminal and lateral membrane of pro-acinar/acinar cells. AQP5 is also detected in the basal membrane of acinar cells at P25 and P60. In the intercalated ducts at P60, the male glands show apical staining in the entire segment, while only the proximal region is positive in the female glands. These results demonstrate an evolving distribution of AQP5 during pre- and postnatal development in the mouse SMGs
Expression of NGAL-specific cells and mRNA levels correlate with inflammation in the salivary gland, and its overexpression in the saliva, of patients with primary Sjögren’s syndrome
Salivary gland involvement is a characteristic feature of primary Sjögren’s syndrome (pSS), where tissue destruction is mediated by infiltrating immune cells, and may be accompanied by the presence of adipose tissue. Optimally diagnosing this multifactorial disease requires the incorporation of additional routines. Screening for disease-specific biomarkers in biological fluid could be a promising approach to increase diagnostic accuracy. We have previously investigated disease biomarkers in saliva and tear fluid of pSS patients, identifying Neutrophil gelatinase-associated lipocalin (NGAL) as the most upregulated protein in pSS. In the current study, we aimed to explore for the first time NGAL expression at the site of inflammation in the pSS disease target organ. Immunohistochemical staining was conducted on minor salivary gland biopsies from 11 pSS patients and 11 non-SS sicca subjects, targeting NGAL-specific cells. Additional NGAL/PNAd double staining was performed to study NGAL expression in high endothelial venules, known as specialised vascular structures. Moreover, NGAL mRNA expression was measured utilising quantitative real-time polymerase chain reaction (qRT-PCR) on minor salivary gland biopsies from 15 pSS patients and 7 non-SS sicca individuals that served as tissue controls. Our results demonstrated NGAL expression in acinar and ductal epithelium within the salivary gland of pSS patients, where significantly greater levels of acinar NGAL were observed in pSS patients (p < .0018) when compared to non-SS subjects. Also, acinar expression positively correlated with focus score values (r 2 = 0.54, p < .02), while ductal epithelial expression showed a negative such correlation (r 2 = 0.74, p < .003). Some PNAD+ endothelial venules also expressed NGAL. An increase in NGAL staining with increased fatty replacement was also observed in pSS patients. Concurringly, a 27% increase in NGAL mRNA levels were also detected in the minor salivary glands of pSS patients when compared to non-SS tissue control subjects. In conclusion, there is a positive association between increase in NGAL expression and inflammation in the pSS disease target organ, which also coincides with its previously demonstrated upregulation in the saliva of pSS patients. Additional functional analyses are needed to better understand the immunological implications of this potential biomarker
Expression of NGAL-specific cells and mRNA levels correlate with inflammation in the salivary gland, and its overexpression in the saliva, of patients with primary Sjögren’s syndrome
Salivary gland involvement is a characteristic feature of primary Sjögren’s syndrome (pSS), where tissue destruction is mediated by infiltrating immune cells, and may be accompanied by the presence of adipose tissue. Optimally diagnosing this multifactorial disease requires the incorporation of additional routines. Screening for disease-specific biomarkers in biological fluid could be a promising approach to increase diagnostic accuracy. We have previously investigated disease biomarkers in saliva and tear fluid of pSS patients, identifying Neutrophil gelatinase-associated lipocalin (NGAL) as the most upregulated protein in pSS. In the current study, we aimed to explore for the first time NGAL expression at the site of inflammation in the pSS disease target organ. Immunohistochemical staining was conducted on minor salivary gland biopsies from 11 pSS patients and 11 non-SS sicca subjects, targeting NGAL-specific cells. Additional NGAL/PNAd double staining was performed to study NGAL expression in high endothelial venules, known as specialised vascular structures. Moreover, NGAL mRNA expression was measured utilising quantitative real-time polymerase chain reaction (qRT-PCR) on minor salivary gland biopsies from 15 pSS patients and 7 non-SS sicca individuals that served as tissue controls. Our results demonstrated NGAL expression in acinar and ductal epithelium within the salivary gland of pSS patients, where significantly greater levels of acinar NGAL were observed in pSS patients (p < .0018) when compared to non-SS subjects. Also, acinar expression positively correlated with focus score values (r 2 = 0.54, p < .02), while ductal epithelial expression showed a negative such correlation (r 2 = 0.74, p < .003). Some PNAD+ endothelial venules also expressed NGAL. An increase in NGAL staining with increased fatty replacement was also observed in pSS patients. Concurringly, a 27% increase in NGAL mRNA levels were also detected in the minor salivary glands of pSS patients when compared to non-SS tissue control subjects. In conclusion, there is a positive association between increase in NGAL expression and inflammation in the pSS disease target organ, which also coincides with its previously demonstrated upregulation in the saliva of pSS patients. Additional functional analyses are needed to better understand the immunological implications of this potential biomarker
Saliva Metabolomics in Dry Mouth Patients with Head and Neck Cancer or Sjögren’s Syndrome
The etiology of dry mouth conditions is multi-faceted. Patients radiated after head and neck cancer (HNC) and those with primary Sjögren’s syndrome (pSS) share many of the same symptoms despite different causes. With the aim of better understanding the pathophysiology and biochemical processes behind dry mouth with different etiologies, we investigated the metabolic profile of 10 HNC patients, 9 pSS patients and 10 healthy controls using high-performance liquid chromatography-high resolution mass spectrometry (HPLC-MS) metabolomics. Principal component analysis (PCA) revealed different metabolic profiles when comparing all subjects included in the study. Both patient groups showed higher ratios of several pyrimidine nucleotides and nucleosides when compared to controls. This finding may indicate that purinergic signaling plays a role in dry mouth conditions. Moreover, significantly increased levels of DL-3-aminoisobutyric acid were found in HNC patients when compared to controls, and a similar tendency was observed in the pSS patients. Furthermore, a dysregulation in amino acid metabolism was observed in both patient groups. In conclusion, metabolomics analysis showed separate metabolic profiles for HNC and pSS patients as compared to controls that could be useful in diagnostics and for elucidating the different pathophysiologies. The demonstrated dysregulation of pyrimidine nucleotides and levels of metabolites derived from amino acids in the patient groups should be studied further
Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography.
Extracellular vesicles (EVs) are a heterogeneous population of biological particles released by cells. They represent an attractive source of potential biomarkers for early detection of diseases such as cancer. However, it is critical that sufficient amounts of EVs can be isolated and purified in a robust and reproducible manner. Several isolation methods that seem to produce distinct populations of vesicles exist, making data comparability difficult. While some methods induce cellular stress that may affect both the quantity and function of the EVs produced, others involve expensive reagents or equipment unavailable for many laboratories. Thus, there is a need for a standardized, feasible and cost-effective method for isolation of EVs from cell culture supernatants. Here we present the most common obstacles in the production and isolation of small EVs, and we suggest a combination of relatively simple strategies to avoid these. Three distinct cell lines were used (human oral squamous cell carcinoma (PE/CA-PJ49/E10)), pancreatic adenocarcinoma (BxPC3), and a human melanoma brain metastasis (H3). The addition of 1% exosome-depleted FBS to Advanced culture media enabled for reduced presence of contaminating bovine EVs while still ensuring an acceptable cell proliferation and low cellular stress. Cells were gradually adapted to these new media. Furthermore, using the Integra CELLine AD1000 culture flask we increased the number of cells and thereby EVs in 3D-culture. A combination of ultrafiltration with different molecular weight cut-offs and size-exclusion chromatography was further used for the isolation of a heterogeneous population of small EVs with low protein contamination. The EVs were characterized by nanoparticle tracking analysis, immunoaffinity capture, flow cytometry, Western blot and transmission electron microscopy. We successfully isolated a significant amount of small EVs compatible with exosomes from three distinct cell lines in order to demonstrate reproducibility with cell lines of different origin. The EVs were characterized as CD9 positive with a size between 60-140 nm. We conclude that this new combination of methods is a robust and improved strategy for the isolation of EVs, and in particular small EVs compatible with exosomes, from cell culture media without the use of specialized equipment such as an ultracentrifuge