91 research outputs found
SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints
Background: Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results: We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that they are mediated by various DNA double strand break repair mechanisms, as well as aberrant replication. Further, two of the 17 NF1 deletions with non-recurrent breakpoints, identified in unrelated patients, occur in association with the concomitant insertion of SINE/variable number of tandem repeats/Alu (SVA) retrotransposons at the deletion breakpoints. The respective breakpoints are refractory to analysis by standard breakpoint-spanning PCRs and are only identified by means of optimized PCR protocols designed to amplify across GC-rich sequences. The SVA elements are integrated within SUZ12P intron 8 in both patients, and were mediated by target-primed reverse transcription of SVA mRNA intermediates derived from retrotranspositionally active source elements. Both SVA insertions occurred during early postzygotic development and are uniquely associated with large deletions of 1 Mb and 867 kb, respectively, at the insertion sites. Conclusions: Since active SVA elements are abundant in the human genome and the retrotranspositional activity of many SVA source elements is high, SVA insertion-associated large genomic deletions encompassing many hundreds of kilobases could constitute a novel and as yet under-appreciated mechanism underlying large-scale copy number changes in the human genome
Mutational spectrum by phenotype: panel-based NGS testing of patients with clinical suspition of RASopathy and children with multiple café-au-lait macules
Children with neurofibromatosis type 1 (NF1) may exhibit an incomplete clinical presentation, making difficult to reach a clinical diagnosis. A phenotypic overlap may exist in children with other RASopathies or with other genetic conditions if only multiple cafĂ©âauâlait macules (CALMs) are present. The syndromes that can converge in these inconclusive phenotypes have different clinical courses. In this context, an early genetic testing has been proposed to be clinically useful to manage these patients. We present the validation and implementation into diagnostics of a custom NGS panel (I2HCP, ICOâIMPPC Hereditary Cancer Panel) for testing patients with a clinical suspicion of a RASopathy (n = 48) and children presenting multiple CALMs (n = 102). We describe the mutational spectrum and the detection rates identified in these two groups of individuals. We identified pathogenic variants in 21 out of 48 patients with clinical suspicion of RASopathy, with mutations in NF1 accounting for 10% of cases. Furthermore, we identified pathogenic mutations mainly in the NF1 gene, but also in SPRED1, in more than 50% of children with multiple CALMs, exhibiting an NF1 mutational spectrum different from a group of clinically diagnosed NF1 patients (n = 80). An NGS panel strategy for the genetic testing of these two phenotypeâdefined groups outperforms previous strategie
SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints
Background: Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results: We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that the
Examination of the genetic factors underlying the cognitive variability associated with neurofibromatosis type 1
Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder associated with cognitive deficits. The NF1 cognitive phenotype is generally considered to be highly variable, possibly due to the observed T2-weighted hyperintensities, loss of heterozygosity, NF1-specific genetic modifiers, or allelic imbalance. Methods: We investigated cognitive variability and assessed the contribution of genetic factors by performing a retrospective cohort study and a monozygotic twin case series. We included data of 497 children with genetically confirmed NF1 and an IQ assessment, including 12 monozygotic twin and 17 sibling sets. Results: Individuals carrying an NF1 chromosomal microdeletion showed significant lower full-scale IQ (FSIQ) scores than individuals carrying intragenic pathogenic NF1 variants. For the intragenic subgroup, the variability in cognitive ability and the correlation of IQ between monozygotic NF1 twin pairs or between NF1 siblings is similar to the general population. Conclusions: The variance and heritability of IQ in individuals with NF1 are similar to that of the general population, and hence mostly driven by genetic background differences. The only factor that significantly attenuates IQ in NF1 individuals is the NF1 chromosomal microdeletion genotype. Implications for clinical management are that individuals with intragenic NF1 variants that score <1.5â2 SD below the mean of the NF1 population should be screened for additional causes of cognitive disability
Legius Syndrome in Fourteen Families
Legius syndrome presents as an autosomal dominant condition characterized by café-au-lait macules with or without freckling and sometimes a Noonan-like appearance and/or learning difficulties. It is caused by germline loss-of-function SPRED1 mutations and is a member of the RAS-MAPK pathway syndromes. Most mutations result in a truncated protein and only a few inactivating missense mutations have been reported. Since only a limited number of patients has been reported up until now, the full clinical and mutational spectrum is still unknown. We report mutation data and clinical details in fourteen new families with Legius syndrome. Six novel germline mutations are described. The Trp31Cys mutation is a new pathogenic SPRED1 missense mutation. Clinical details in the 14 families confirmed the absence of neurofibromas, and Lisch nodules, and the absence of a high prevalence of central nervous system tumors. We report white matter T2 hyperintensities on brain MRI scans in 2 patients and a potential association between postaxial polydactyly and Legius syndrome. © 2010 Wiley-Liss, Inc
Neurofibromatosis type 1-related pseudarthrosis: Beyond the pseudarthrosis site.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder affecting approximately 1 in 2,000 newborns. Up to 5% of NF1 patients suffer from pseudarthrosis of a long bone (NF1-PA). Current treatments are often unsatisfactory, potentially leading to amputation. To gain more insight into the pathogenesis we cultured cells from PA tissue and normal-appearing periosteum of the affected bone for NF1 mutation analysis. PA cells were available from 13 individuals with NF1. Biallelic NF1 inactivation was identified in all investigated PA cells obtained during the first surgery. Three of five cases sampled during a later intervention showed biallelic NF1 inactivation. Also, in three individuals, we examined periosteum-derived cells from normal-appearing periosteum proximal and distal to the PA. We identified the same biallelic NF1 inactivation in the periosteal cells outside the PA region. These results indicate that NF1 inactivation is required but not sufficient for the development of NF1-PA. We observed that late-onset NF1-PA occurs and is not always preceded by congenital bowing. Furthermore, the failure to identify biallelic inactivation in two of five later interventions and one reintervention with a known somatic mutation indicates that NF1-PA can persist after the removal of most NF1 negative cells
Deep genomic analysis of malignant peripheral nerve sheath tumor cell lines challenges current malignant peripheral nerve sheath tumor diagnosis
Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas of the peripheral nervous system that develop either sporadically or in the context of neurofibromatosis type 1 (NF1). MPNST diagnosis can be challenging and treatment outcomes are poor. We present here a resource consisting of the genomic characterization of 9 widely used human MPNST cell lines for their use in translational research. NF1-related cell lines recapitulated primary MPNST copy number profiles, exhibited NF1 , CDKN2A , and SUZ12/EED tumor suppres-sor gene (TSG) inactivation, and presented no gain-of-function mutations. In contrast, sporadic cell lines collectively displayed different TSG inactivation patterns and presented kinase-activating mutations, fusion genes, altered muta-tional frequencies and COSMIC signatures, and different methylome-based clas-sifications. Cell lines re-classified as melanomas and other sarcomas exhibited a different drug-treatment response. Deep genomic analysis, methylome-based classification, and cell-identity marker expression, challenged the identity of common MPNST cell lines, opening an opportunity to revise MPNST differential diagnosis
Lifestyle Factors and Breast Cancer in Females with PTEN Hamartoma Tumor Syndrome (PHTS)
Females with PTEN Hamartoma Tumor Syndrome (PHTS) have breast cancer risks up to 76%. This study assessed associations between breast cancer and lifestyle in European female adult PHTS patients. Data were collected via patient questionnaires (July 2020âMarch 2023) and genetic diagnoses from medical files. Associations between lifestyle and breast cancer were calculated using logistic regression corrected for age. Index patients with breast cancer before PHTS diagnosis (breast cancer index) were excluded for ascertainment bias correction. In total, 125 patients were included who completed the questionnaire at a mean age of 44 years (SD = 13). This included 21 breast cancer indexes (17%) and 39 females who developed breast cancer at 43 years (SD = 9). Breast cancer patients performed about 1.1 times less often 0â1 times/week physical activity than â„2 times (ORtotal-adj = 0.9 (95%CI 0.3â2.6); consumed daily about 1.2â1.8 times more often â„1 than 0â1 glasses of alcohol (ORtotal-adj = 1.2 (95%CI 0.4â4.0); ORnon-breastcancer-index-adj = 1.8 (95%CI 0.4â6.9); were about 1.04â1.3 times more often smokers than non-smokers (ORtotal-adj = 1.04 (95%CI 0.4â2.8); ORnon-breastcancer-index-adj = 1.3 (95%CI 0.4â4.2)); and overweight or obesity (72%) was about 1.02â1.3 times less common (ORtotal-adj = 0.98 (95%CI 0.4â2.6); ORnon-breastcancer-index-adj = 0.8 (95%CI 0.3â2.7)). Similar associations between lifestyle and breast cancer are suggested for PHTS and the general population. Despite not being statistically significant, results are clinically relevant and suggest that awareness of the effects of lifestyle on patientsâ breast cancer risk is important.</p
Lifestyle Factors and Breast Cancer in Females with PTEN Hamartoma Tumor Syndrome (PHTS)
Simple Summary: Females with PTEN Hamartoma Tumor Syndrome (PHTS) have very high hereditary breast cancer risks up to 76%. The aim of this European cohort study was to the describe the lifestyle in PHTS patients and to assess associations between physical activity, alcohol consumption, tobacco smoking, BMI and breast cancer in female adult PHTS patients. It was observed that of 125 patients who completed the questionnaire, 81% were >= 2 times/week physically active, 86% consumed on average = 2 times (ORtotal-adj = 0.9 (95%CI 0.3-2.6); consumed daily about 1.2-1.8 times more often >= 1 than 0-1 glasses of alcohol (ORtotal-adj = 1.2 (95%CI 0.4-4.0); ORnon-breastcancer-index-adj = 1.8 (95%CI 0.4-6.9); were about 1.04-1.3 times more often smokers than non-smokers (ORtotal-adj = 1.04 (95%CI 0.4-2.8); ORnon-breastcancer-index-adj = 1.3 (95%CI 0.4-4.2)); and overweight or obesity (72%) was about 1.02-1.3 times less common (ORtotal-adj = 0.98 (95%CI 0.4-2.6); ORnon-breastcancer-index-adj = 0.8 (95%CI 0.3-2.7)). Similar associations between lifestyle and breast cancer are suggested for PHTS and the general population. Despite not being statistically significant, results are clinically relevant and suggest that awareness of the effects of lifestyle on patients' breast cancer risk is important
Pigment epithelium derived factor drives melanocyte proliferation and migration in neurofibromatosis café au lait macules
Background: RASopathies, which include neurofibromatosis type 1 (NF1), are defined by Ras/mitogenâactivated protein kinase (Ras/MAPK) pathway activation. They represent a group of clinically related disorders often characterised by multiple CafĂ© au Lait Macules (CALMs). Objectives: To determine, using in depth transcriptomic analysis of NF1 melanocytes from CALM and unaffected skin, (1) the gene(s) responsible for melanocyte proliferation and migration, and (2) the activated signalling pathway(s) in NF1 melanoma. Methods: Classical NF1 (n = 2, who develop tumours) and 3bp deletion NF1 (p. Met992del, who do not develop tumours) (n = 3) patients underwent skin biopsies from CALM and unaffected skin. Melanocytes were isolated and propagated, with five replicates from each tissue sample. DNA and RNA were extracted for mutational analysis and transcriptomic profiling with six replicates per sample. Mechanistic determination was undertaken using melanocyte and melanoma cell lines. Results: All CALMs in NF1 were associated with biallelic NF1 loss, resulting in amplification of Ras/MAPK and Wnt pathway signalling. CALMs were also associated with reduced SERPINF1 gene expression (and pigment epitheliumâderived factor (PEDF) levels, the reciprocal protein), a known downstream target of the master regulator of melanocyte differentiation microphthalmiaâassociated transcription factor (MITF), leading to increased melanocyte proliferation, migration and invasion. In classical NF1 and melanoma, but not 3bp deletion NF1, there was also activation of the PI3K/AKT pathway. Pigment epitheliumâderived factor was found to reduce cell proliferation and invasion of NF1 melanoma. Conclusions: Melanocyte proliferation and migration leading to CALMs in NF1 arises from biallelic NF1 loss, resulting in RAS/MAPK pathway activation, and reduced expression of the tumour suppressor PEDF. Activation of the PI3K/AKT pathway in classical NF1 and NF1 melanoma may facilitate tumour growth
- âŠ