1,492 research outputs found

    The upgrade of GEO600

    Get PDF
    The German / British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.Comment: 9 pages, Amaldi 8 conference contributio

    Photon pressure induced test mass deformation in gravitational-wave detectors

    Get PDF
    A widely used assumption within the gravitational-wave community has so far been that a test mass acts like a rigid body for frequencies in the detection band, i.e. for frequencies far below the first internal resonance. In this article we demonstrate that localized forces, applied for example by a photon pressure actuator, can result in a non-negligible elastic deformation of the test masses. For a photon pressure actuator setup used in the gravitational wave detector GEO600 we measured that this effect modifies the standard response function by 10% at 1 kHz and about 100% at 2.5 kHz

    Optimal time-domain combination of the two calibrated output quadratures of GEO 600

    Get PDF
    GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods

    DC-readout of a signal-recycled gravitational wave detector

    Full text link
    All first-generation large-scale gravitational wave detectors are operated at the dark fringe and use a heterodyne readout employing radio frequency (RF) modulation-demodulation techniques. However, the experience in the currently running interferometers reveals several problems connected with a heterodyne readout, of which phase noise of the RF modulation is the most serious one. A homodyne detection scheme (DC-readout), using the highly stabilized and filtered carrier light as local oscillator for the readout, is considered to be a favourable alternative. Recently a DC-readout scheme was implemented on the GEO 600 detector. We describe the results of first measurements and give a comparison of the performance achieved with homodyne and heterodyne readout. The implications of the combined use of DC-readout and signal-recycling are considered.Comment: 11 page

    Triple Michelson Interferometer for a Third-Generation Gravitational Wave Detector

    Full text link
    The upcoming European design study `Einstein gravitational-wave Telescope' represents the first step towards a substantial, international effort for the design of a third-generation interferometric gravitational wave detector. It is generally believed that third-generation instruments might not be installed into existing infrastructures but will provoke a new search for optimal detector sites. Consequently, the detector design could be subject to fewer constraints than the on-going design of the second generation instruments. In particular, it will be prudent to investigate alternatives to the traditional L-shaped Michelson interferometer. In this article, we review an old proposal to use three Michelson interferometers in a triangular configuration. We use this example of a triple Michelson interferometer to clarify the terminology and will put this idea into the context of more recent research on interferometer technologies. Furthermore the benefits of a triangular detector will be used to motivate this design as a good starting point for a more detailed research effort towards a third-generation gravitational wave detector.Comment: Minor corrections to the main text and two additional appendices. 14 pages, 6 figure

    A statistical veto method employing an amplitude consistency check

    Get PDF
    Statistical veto methods are commonly used to reduce the list of candidate gravitational wave (GW) events which are detected as transient (burst) signals in the main output of GW detectors. If a burst event in the GW channel is coincident with an event in a veto channel (where the veto channel does not contain any GW signal), it is possible to veto the event from the GW channel with a low 'false-veto' rate. Unfortunately, many promising veto channels are interferometer channels which can, at some level, contain traces of any detected GW signal. In this case, the application of a 'standard statistical veto' could have a high false-veto rate. We will present an extension to the standard statistical veto method that includes an 'amplitude consistency check'. This method allows the application of statistical vetoes derived from interferometer channels containing GW information with a low false-veto rate. By applying a statistical veto with an amplitude consistency check to data from the GEO 600 detector, veto efficiencies between 5 and 20%, together with a use-percentage of up to 80%, were obtained. The robustness of this veto method was also confirmed by hardware injections. The burst triggers were generated using the mHACR detection algorithm

    Physical instrumental vetoes for gravitational-wave burst triggers

    Full text link
    We present a robust strategy to \emph{veto} certain classes of instrumental glitches that appear at the output of interferometric gravitational-wave (GW) detectors.This veto method is `physical' in the sense that, in order to veto a burst trigger, we make use of our knowledge of the coupling of different detector subsystems to the main detector output. The main idea behind this method is that the noise in an instrumental channel X can be \emph{transferred} to the detector output (channel H) using the \emph{transfer function} from X to H, provided the noise coupling is \emph{linear} and the transfer function is \emph{unique}. If a non-stationarity in channel H is causally related to one in channel X, the two have to be consistent with the transfer function. We formulate two methods for testing the consistency between the burst triggers in channel X and channel H. One method makes use of the \emph{null-stream} constructed from channel H and the \emph{transferred} channel X, and the second involves cross-correlating the two. We demonstrate the efficiency of the veto by `injecting' instrumental glitches in the hardware of the GEO 600 detector. The \emph{veto safety} is demonstrated by performing GW-like hardware injections. We also show an example application of this method using 5 days of data from the fifth science run of GEO 600. The method is found to have very high veto efficiency with a very low accidental veto rate.Comment: Minor changes, To appear in Phys. Rev.

    Cost-benefit analysis for commissioning decisions in GEO600

    Get PDF
    Gravitational wave interferometers are complex instruments, requiring years of commissioning to achieve the required sensitivities for the detection of gravitational waves, of order 10^-21 in dimensionless detector strain, in the tens of Hz to several kHz frequency band. Investigations carried out by the GEO600 detector characterisation group have shown that detector characterisation techniques are useful when planning for commissioning work. At the time of writing, GEO600 is the only large scale laser interferometer currently in operation running with a high duty factor, 70%, limited chiefly by the time spent commissioning the detector. The number of observable gravitational wave sources scales as the product of the volume of space to which the detector is sensitive and the observation time, so the goal of commissioning is to improve the detector sensitivity with the least possible detector down time. We demonstrate a method for increasing the number of sources observable by such a detector, by assessing the severity of non-astrophysical noise contaminations to efficiently guide commissioning. This method will be particularly useful in the early stages and during the initial science runs of the aLIGO and adVirgo detectors, as they are brought up to design performance.Comment: 17 pages, 17 figures, 2 table

    Using the etalon effect for in-situ balancing of the Advanced Virgo arm cavities

    Full text link
    Several large-scale interferometric gravitational-wave detectors use resonant arm cavities to enhance the light power in the interferometer arms. These cavities are based on different optical designs: One design uses wedged input mirrors to create additional optical pick-off ports for deriving control signals. The second design employs input mirrors without wedge and thus offers the possibility to use the etalon effect inside the input mirrors for tuning the finesse of the arm cavities. In this article we introduce a concept of maximized flexibility that combines both of these options, by featuring wedges at the input mirrors and using the etalon effect instead in the end mirrors. We present a design for the arm cavities of Advanced Virgo. We have used numerical simulations to derive requirements for the manufacturing accuracy of an end mirror etalon for Advanced Virgo. Furthermore, we give analytical approximations for the achievable tuning range of the etalon in dependence on the reflectance, the curvature and the orientation of the etalon back surface.Comment: 12 pages, 6 Figure

    Assessment of digital image correlation measurement errors: methodology and results

    Get PDF
    Optical full-field measurement methods such as Digital Image Correlation (DIC) are increasingly used in the field of experimental mechanics, but they still suffer from a lack of information about their metrological performances. To assess the performance of DIC techniques and give some practical rules for users, a collaborative work has been carried out by the Workgroup “Metrology” of the French CNRS research network 2519 “MCIMS (Mesures de Champs et Identification en Mécanique des Solides / Full-field measurement and identification in solid mechanics, http://www.ifma.fr/lami/gdr2519)”. A methodology is proposed to assess the metrological performances of the image processing algorithms that constitute their main component, the knowledge of which being required for a global assessment of the whole measurement system. The study is based on displacement error assessment from synthetic speckle images. Series of synthetic reference and deformed images with random patterns have been generated, assuming a sinusoidal displacement field with various frequencies and amplitudes. Displacements are evaluated by several DIC packages based on various formulations and used in the French community. Evaluated displacements are compared with the exact imposed values and errors are statistically analyzed. Results show general trends rather independent of the implementations but strongly correlated with the assumptions of the underlying algorithms. Various error regimes are identified, for which the dependence of the uncertainty with the parameters of the algorithms, such as subset size, gray level interpolation or shape functions, is discussed
    corecore