86 research outputs found

    Comparison of different sloshing speedmeters

    Get PDF
    By numerical simulation, we compare the performance of four speedmeter interferometer configurations with potential application in future gravitational wave detectors. In the absence of optical loss, all four configurations can be adjusted to yield the same sensitivity in a fair comparison. Once we introduce a degree of practicality in the form of lossy optics and mode mismatch, however, the situation changes: the sloshing Sagnac and the speedmeter of Purdue and Chen have almost identical performance showing smaller degradation from the ideal than the speedmeter of Freise and the speedmeter of Miao. In a further step, we show that there is a similar hierarchy in the degree of improvement obtained through the application of 10 dB squeezing to the lossy speedmeters. In this case, the sensitivity of each speedmeter improves, but it is greatest for the sloshing Sagnac and the speedmeter of Purdue and Chen, in particular in the lower part of the target frequency range

    Local-Oscillator Noise Coupling in Balanced Homodyne Readout for Advanced Gravitational Wave Detectors

    Get PDF
    The second generation of interferometric gravitational wave detectors are quickly approaching their design sensitivity. For the first time these detectors will become limited by quantum back-action noise. Several back-action evasion techniques have been proposed to further increase the detector sensitivity. Since most proposals rely on a flexible readout of the full amplitude- and phase-quadrature space of the output light field, balanced homodyne detection is generally expected to replace the currently used DC readout. Up to now, little investigation has been undertaken into how balanced homodyne detection can be successfully transferred from its ubiquitous application in table-top quantum optics experiments to large-scale interferometers with suspended optics. Here we derive implementation requirements with respect to local oscillator noise couplings and highlight potential issues with the example of the Glasgow Sagnac Speed Meter experiment, as well as for a future upgrade to the Advanced LIGO detectors.Comment: 7 pages, 5 figure

    A hybrid generative/discriminative method for EEG evoked potential detection

    Get PDF
    I. INTRODUCTION Generative and discriminative learning approaches are two prevailing and powerful, yet different, paradigms in machine leaning. Generative learning models, such as Bayesian inference [1] attempt to model the underlying distributions of the variables in order to compute classification and regression functions. These methods provide a rich framework for learning from prior knowledge. Discriminative learning models, such as support vector machines (SVM) [2] avoid generative modeling by directly optimizing a mapping from the inputs to the desired outputs by adjusting the resulting classification boundary. These latter methods commonly demonstrate superior performance in classification. Recently, researchers have investigated the relationship between these two learning paradigms and have attempted to combine their complementary strength

    Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors

    Get PDF
    With the recent detection of Gravitational waves (GW), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWD) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum noise limited sensitivity is independent of the actual interferometer configuration, e.g. Michelson and Sagnac interferometers are effected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only effects the high frequency part of the quantum noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back action noise) by the same amount and hence the quantum noise limited sensitivity is not negatively effected in that frequency range. We show that the misalignment of laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof of concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is compatible with the design sensitivity of the experiment

    Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    Get PDF
    Low mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilising multiple pendulum stages with vertical blade springs and materials with high quality factors provides attenuation of seismic and thermal noise, however damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed but introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimisation for this system.Comment: 5 pages, 5 figure

    The upgrade of GEO 600

    Get PDF
    The German/ British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.Science and Technology Facilities Council (STFC)BMBFMax Planck Society (MPG)State of Lower SaxonyDFG/SFB/Transregio

    A BRUTE-FORCE ANALYTICAL FORMULATION OF THE INDEPENDENT COMPONENTS ANALYSIS SOLUTION

    Get PDF
    ABSTRACT Many algorithms based on information theoretic measures and/or temporal statistics of the signals have been proposed for ICA in the literature. There have also been analytical solutions suggested based on predictive modeling of the signals. In this paper, we show that finding an analytical solution for the ICA problem through solving a system of nonlinear equations is possible. We demonstrate that this solution is robust to decreasing sample size and measurement SNR. Nevertheless, finding the root of the nonlinear function proves to be a challenge. Besides the analytical solution approach, we try finding the solution using a least squares approach with the derived analytical equations. Monte Carlo simulations using the least squares approach are performed to investigate the effect of sample size and measurement noise on the performance

    Sagebrush-Obligate Passerine Response to Ecological Site Characteristics

    Get PDF
    Adoption of ecological sites as monitoring and management units by a variety of land users has prompted discussion of their benefits for wildlife habitat management. Density and occurrence of shrub-steppe passerines are often related to key habitat characteristics such as plant species composition, cover, and structure. Until recently, ecological sites have not been tested as units for monitoring and management of passerines. We conducted a study implementing ecological sites as management units and used passerines as indicators of potential use of these sites. Ecological site characteristics and three sagebrush-obligate passerines were quantified on ecological sites at and near Browns Park National Wildlife Refuge in Colorado. In 2006 and 2007, we surveyed passerines and site characteristics using standard techniques within 101, 100-m radius plots. Density of Brewer’s sparrow (Spizella breweri) and occurrence of Brewer’s sparrow, sage sparrow (Amphispiza belli), and sage thrasher (Oreoscoptes montanu) were estimated for six ecological sites and then related to site characteristics. For example, Brewer’s sparrow densities were greatest (3.0 birds/ha) on a Loamy Fine Sand Ecological Site containing taller vegetation than vegetation for other ecological sites. Scientific literature commonly associates Brewer’s sparrows with sagebrush (Artemisia tridentata) presence, but on ecological sites at Browns Park Brewer’s densities are related more to vegetative structure rather than species composition. Results show there are links between passerine populations and ecological sites; a relationship which provides a meaningful foundation in developing long-term monitoring protocols and enhancing management decisions to favor sagebrush-obligate passerines

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode
    • …
    corecore