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Abstract

By numerical simulation, we compare the performance of four speedmeter
interferometer configurations with potential application in future gravitational
wave detectors. In the absence of optical loss, all four configurations can be
adjusted to yield the same sensitivity in a fair comparison. Once we introduce a
degree of practicality in the form of lossy optics and mode mismatch, however,
the situation changes: the sloshing Sagnac and the speedmeter of Purdue and
Chen have almost identical performance showing smaller degradation from the
ideal than the speedmeter of Freise and the speedmeter of Miao. In a further
step, we show that there is a similar hierarchy in the degree of improvement
obtained through the application of 10 dB squeezing to the lossy speedmeters.
In this case, the sensitivity of each speedmeter improves, but it is greatest for
the sloshing Sagnac and the speedmeter of Purdue and Chen, in particular in
the lower part of the target frequency range.

Keywords: gravitational wave detector, speedmeter, interferometer
(Some figures may appear in colour only in the online journal)

1. Introduction

The detection of gravitational waves [1] was accomplished using laser-interferometric detec-
tors. In the near future the network of detectors is to be extended [2—-6], facilitating sources
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of gravitational waves to be more accurately located in the sky, and extending the range of
observational science that may be achieved. In the longer term the community shares a goal
of implementing a network of even more sensitive instruments. When considering how to fur-
ther enhance the sensitivity of gravitational wave detectors, we note that the current detectors
are position-sensing detectors, and as such are subject to quantum back-action in the form
of radiation-pressure noise which sets a boundary for the low-frequency performance of these
conventional instruments. Indeed the current instruments are expected to approach the standard
quantum limit (SQL) within the next few years, for mirror masses of order 40 kg. Although
techniques such as heavier mirrors and combinations of filter cavities with squeezed light
can to some extent suppress this back-action noise, our current work concerns an alternative
approach based on velocity-sensing devices, generally called speedmeters [7], that can elimi-
nate radiation-pressure noise by design at least in the ideal case. Implementation of speedmeter-
based detectors may be an effective route to meeting our aim to enable detection of more, and
also more distant sources of gravitational waves.

In general, instruments which offer the possibility of surpassing the SQL are called quan-
tum non-demolition (QND) devices. While several QND methods have been identified, in this
paper we restrict ourselves to speedmeters that are able to be implemented using established
interferometric techniques. Position metres of the kind employed thus far reach the SQL at
a single frequency, or in a narrow band; speedmeters, however, feature quantum-noise lim-
ited performance that ‘naturally’ follows the SQL as a function of frequency over a relatively
wide band. Such detectors, therefore, provide a practical approach to obtaining improved per-
formance over a significant band at the lower-end of the gravitational wave spectrum that is
accessible to detection on Earth, i.e. broadly from 1 Hz up to around 100 Hz. In this work we
therefore focus on methods that yield high sensitivity within this band.

Several speedmeter topologies have been discovered [§—17]. These all work by eliminat-
ing position information from the measurement output thereby satisfying the requirements of
a QND measurement. This is accomplished by, in effect, cancelling position measurements
separated by a short interval of time. To achieve this within a laser-interferometric detector,
signal-carrying light is stored for a short period after which it is superposed with signal-
containing light from a later time such that position information cancels. The methods we
consider are all based on the process of storing the light and feeding it back into the system
with the appropriate time delay, or phase shift, and this approach is called sloshing.

In this work we consider two known classes of sloshing speedmeter: the sloshing Michelson
speedmeter and the sloshing Sagnac speedmeter. These instruments have the practical advan-
tage of being able to be built from the same functional units as existing position-metre designs,
namely combinations of linear optical cavities with additional mirrors and beam-splitters oper-
ating with light of a single polarisation. They employ neither ring cavities nor do they require
novel application of polarising optics, techniques that are under consideration as alternative
approaches to speedmeter design, but which have a range of practical difficulties that currently
require investigation.

The Michelson sloshing speedmeter exists in three different variants, and we consider these
in historical order: the first is that proposed by Purdue and Chen [10]; the second is that from
Miao [18]; and the third was proposed by Freise [19]. The configurations described by Miao
and Freise are progressive simplifications of the original Purdue and Chen speedmeter, by
leaving one or two mirrors out. More details can be found in section 3. We compare the sensi-
tivity of these Michelson sloshing speedmeters to each other and to that of the sloshing Sagnac
speedmeter, proposed by one of us (S D), and previously analysed in [16].

To allow the detection of gravitational-wave induced signal-sidebands, speedmeters, in
common with other approaches, require the extremely-weak signal-containing light to be
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mixed with a stronger local oscillator light. Here we assume the use of a balanced homo-
dyne signal readout as this method is becoming standard for future detector designs [20]. In
the models presented below, a numerical phase shift was employed to adjust the phase of the
homodyne field to maximise the signal to noise ratio snr.

In a detector limited predominantly by quantum noise, a common technique to further
improve the snr is to apply squeezed light, or more precisely, squeezed vacuum [21]. With
the correct and potentially frequency-dependent choice of the squeezing phase, this process
can reduce the quantum noise over a significant part of the measurement band. In this respect,
speedmeters as a class have an advantage over position metres, as within the range of frequen-
cies in which speedmeter behaviour is exhibited, a single, frequency-independent squeezing
phase suffices. In a practical system with optical cavities in the arms of the detector, the stor-
age time of the cavities affects the response near and above the ‘corner frequency’ represented
by the low-pass filtering action of the cavities—typically in the order of 100 Hz in modern
gravitational wave detectors. Optimisation of squeezing over the complete frequency band
requires frequency-dependent squeezing, even in the case of a speedmeter, and is beyond the
scope of the current work. We concentrate instead on the frequency band between the sub-
1 Hz mechanical modes of the mirror suspensions and the cavity corner frequency which is
around 80 Hz for the specific example system described below. In this context, we explore
the performance of the four speedmeters under consideration by including in our models
the option of applying 10 dB squeezing, an amount of squeezing that is expected to be
entirely practical in the time-frame of the future gravitational wave detectors. For ease of
comparing results we choose to optimise the models for performance at a frequency of 10
Hz, broadly in the middle of the band where the systems exhibit a speedmeter response.
The exact choice of optimisation frequency within this band is inconsequential in terms
of the conclusions that are drawn. Further detail of the optimisation procedure is given
below.

In section 2, we introduce the required theory to describe the interferometers in question.
Section 3 introduces the four speedmeters in more detail and considers their performance with
ideal lossless mirrors. In that section we establish the parameters chosen to ensure a fair com-
parison that provides closely-similar sensitivity spectra for the four cases. In section 4, we
introduce loss into the model, considering its effect on all of the optical components of the
speedmeters, and discuss the differences that emerge in their performance. In section 5, we
introduce squeezing to our lossy speedmeters, observing that these differences become more
pronounced. We present our conclusion in section 6.

2. Quantum noise

The speedmeter introduced by Purdue and Chen is extensively discussed in [9, 10], including
details of the effect of losses and the application of squeezing. Similarly, Miao provides a gen-
eral description, of the system we identify eponymously, in his thesis [ 18], and Freise described
his further-simplification of the approach in his presentation [19]. For the sloshing-Sagnac[16],
there exists a description without consideration of loss or squeezing. The derivation, discus-
sion and comparison of the theory, including losses and squeezing for all these speedmeters
is beyond the scope of this paper. We present a brief introduction and general outline of how
the relevant calculations are performed for the Michelson sloshing speedmeter, noting that
these methods underpin the numerical simulations employed to obtain results presented in
the subsequent sections. For the interested reader, a more detailed analysis can be found in
[9, 10, 22].
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The quantum noise of an interferometer is usually described by the two-photon formalism
introduced by Caves and Schumaker [23, 24] that represents the input and output light fields
at a fixed location in the interferometer in terms of quadrature amplitudes:

Ein(t) = & [(A™ + &) cos wpt + a2 sin wpt] (D)

E0) = & [(B;’”‘ + b2 cos wpt + (BN 4 b2) sin wpt} . 2)

with & = /4mhw,/(Ac) is a normalisation constant defined in the second quantisation
of a monochromatic light beam with the carrier frequency wy, reduced Planck constant &
and cross-sectional area A; A™ = |/2P™ /(hw,) (B°") is the classical mean amplitude of the
input (output) light at frequency w, and optical power P G (Z;C,S) describe small, zero-mean
quantum fluctuations and variations due to the signal, and they are related to the creation and
annihilation operators through

a4t 4
%, and a, =22 3)

Input/output-relations allow us to evaluate the light fields at any location within the optical
system, and thereby understand the propagation of quantum noise throughout the interferome-
ter. Analysis of the full interferometer, including losses and imperfections, usually requires to
solve a quite extended system of equations, which is normally too large to be tractable analyt-
ically (see section 2 of [25]). This task is best suited for numerical simulation software, e.g.,
FINESSE [26], which is used in this work. Yet to grasp the main features of the quantum noise
behaviour, it is sufficient to consider a symmetric, resonance-tuned and loss-free model of the
interferometer, which has a particularly simple form of I/O-relations that read:

ac =

E::)ut — 6215&?}, (4)

~ . . . . h
bgut — e215 (&Ln _ ’Cfl::n) 4 61‘6 /ZICi (5)
‘ ‘ hsqL

where £ is the sensitivity of the interferometer, that is, the noise of the detector expressed as

an equivalent gravitational wave strain spectral density, hisqL = 1/ 8%/ (ML29?) is the SQL of
the effective differential arm degree of freedom with reduced mass M, € is the gravitational
wave frequency, L is the arm length, C is the configuration-specific optomechanical coupling
factor of the interferometer introduced by Kimble et al [22], S is the additional phase shift light
sidebands acquire as they travel in the interferometer, and &ic"‘s and ngt stand for the spectra of
the cosine and sine quadratures of the sideband fields entering and leaving the signal port of
the interferometer. The Fourier transform for the entering fields is:

. dQ . i
Gos() = / e ™ ©)

The explicit equations that define K for each of the considered speedmeter variants appear
to be very close to each other and grasped by the two coupled cavity model, outlined in the
original proposal by Braginsky and Khalili [7] and later adopted for optical interferometry
in [8]. Apart from different auxiliary optics, the integral part of the studied speedmeters is
a ‘sloshing’ optical cavity placed in the output port of the standard Fabry—Perot—Michelson
interferometer. The GW signal ‘sloshes’ back and forth between the two effective coupled
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cavities with an alternating sign and the sloshing rate (2, = 7, / LTTb defined by the transmittance

T of the sloshing cavity’s input coupler and the length of the sloshing cavity L.
The corresponding general formula for the Michelson sloshing speedmeter optomechanical
coupling factor can be written as follows:

Ts ]CMI Sin2 asc

K 0) =
ssM) = A Ban  as0)  ToR, cos? Bt — T cos(Ban + 250)

(N

where Ky and Sy are the optomechanical coupling factor and a frequency-dependent phase
shift the modulation sidebands acquire as they pass through the interferometer:

oo OmT 1 — Ry ~ _ 2OM1Yum
M0 1 —2yRim 08 297 + Ry Q2(32, + )

1 + Rirm
I — v/Rirm

with Oy = 4w, P /(McL) is the normalised intra cavity power, where P is the optical power
circulating in the interferometer, 7ypv = 1 — Ry is the transmittance of the input test mass of
the arm cavities, R; is the reflectance of the input coupler of the sloshing cavity, 7 is the light
travel time at distance L, and 7, = Titm/(47) is the half-bandwidth of the arm cavity. The
approximate equality sign indicates the approximation that GW signal sidebands frequencies
are much lower than the free spectral range of the arm cavities, i.e. 2L /c < 1. The phase shift
introduced by the sloshing cavity, asc, is defined by the same expression as Sy With Y
substituted with the half-bandwidth, ysc, of the sloshing cavity. Thus, one can finally write the
following general formula for the optomechanical coupling factor in a sloshing speedmeter as:

®)

By = arctan ( tan QT) ~ arctan(€2/Yarm), 9)

4®7arm
(€ — )2 + 2,0

arm

Kssm(2) ~ (10)
where © is the normalised intra cavity power for the general sloshing speedmeter.
Assuming a homodyne readout of an arbitrary outgoing light quadrature bZ“‘ = b cos ¢ +

l;;"“ sin ¢ and assuming a vacuum state for the incoming field @™, one can get the following
expression (cf equation (20) in [25]) for the power spectral density of quantum noise in the
lossless tuned interferometer, characterised by optomechanical coupling factor K using I/O-
relations (4):

h2
h _sqL . 2
Sty = D [(K(€) — cot O)* + 1] (11)

where ( is the homodyne phase. If one assumes a squeezed vacuum injection instead, the above

formula transforms into the following one:

h2
st = zs_/QcL {e¥(sin A — cos A[K — cot ¢])* + e ¥ (cos A + sin A[K — cot ()*}. (12)

sqz
where r is the squeezing factor and A is the squeezing angle. In the case of phase squeezing,

when A = 0, the above formula transforms into a much simpler and intuitive one:

sqz

h2
st = ZS—I%L {e¥(K —cot () +e 7} (13)
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In equation (11), one can see that the term o< (K(2) — cot (), originating from the back
action, can be made zero, if ¢ = arccot /. This is the idea behind the well-known variational
readout concept that allows us to eliminate the radiation-pressure noise from the readout of
the GW interferometer, but the back-action is eliminated only in the absence of loss. However,
since /C(£2) has a strong dependence on the GW frequency, owing mainly to the mechanical
response of the test masses to the radiation pressure force, it is impossible without additional
dispersive elements (filter cavities) to achieve the necessary frequency dependence of ((€2).

If one is interested in optimising the performance of the GW interferometer predominantly
at low frequencies, the speedmeter approach is worthwhile of consideration, since for frequen-
cies below the cavity pole 2 < vum < €, the optomechanical coupling becomes frequency
independent, Kssm — 407arm/ Qf = const. In this case the optimal readout quadrature can be
obtained, (g8, = arccot (407 /€27) resulting in a back-action-free sensitivity curve paral-
lel to the SQL line, characteristic of speedmeter behaviour. Phase squeezing is optimal in this
case, with A = 0, which provides e~ 2" reduction of noise in the entire back-action-free range of
frequencies. It has to be noted though that to overcome the SQL a sufficient amount of optical
power has to circulate in the arms exceeding some threshold value, P§r§§\4, defined from the
condition gy, = 1 that yields

Pcrit M 04 T§2

=_ -5 14
SSM 64WPL3 TITM ( )

The idealised picture above breaks down when one takes different loss into account. Loss in
different parts of the interferometer influence different frequency bands, however the effect it
has is universal—extra noise is added to the ideal quantum noise budget of a lossless interfer-
ometer. This is the direct consequence of the fluctuation-dissipation theorem (FDT) of Callen
and Welton [27] that uniquely links any dissipation in the system to a respective source of
uncorrelated vacuum fluctuations injected into the system at the lossy element. Since speedme-
ters, as any quantum noise mitigating devices, rely on quantum correlations of the intracavity
light field, any vacuum field mixing in with the intricate intracavity light quantum state ruins
those correlations.

We analyse numerically the influence of various sources of loss on the sensitivity of con-
sidered schemes hereinafter, yet three main loss mechanisms are common for any scheme and
have the largest overall effect on the final sensitivity. These are (i) readout loss, (ii) intracavity
loss and (iii) injection loss.

The first one arises due to non-unity quantum efficiency, 7 — d < 1, of the photodiodes and
boils down to additional vacuum noise added to the readout of the ideal interferometer in the

proportion of £, = /1 — 1/n,:
l;‘gm =V (133“ cos ¢ + b sin C) + /1 — naityac.

Intracavity loss manifests as the fractional loss of photons inside the interferometer, cover-
ing loss in the arms, mode mismatch between the arms and the sloshing cavities, loss on the
beam splitter and such. It can be phenomenologically characterised by the effective photon
loss coefficient &y = 1/Aloss/(1 — Ajoss) per photon injected. As our numerical study shows
(see tables 3 and 4), the greatest impact on performance is observed when loss is introduced
between the arms and the sloshing cavity. The reason is clear: the sloshing speedmeter cancels
back-action that light inflicts before leaving for the sloshing cavity by re-injecting the very same
photons after being reflected with the 7-phase shift off the sloshing cavity, thereby applying
the same back-action force but with an opposite sign and a time delay defined by €. If a frac-
tion of photons is lost in this transfer and hence substituted by incoherent vacuum fluctuations,

6
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the corresponding fraction of back-action force remains uncompensated, which manifests in
additional Michelson-like back-action force scaled by coefficient &;,,;, which shows up at low
frequencies (cf last term in brackets in (16) below).

Finally, the injection loss influences the performance of the interferometer with squeezed
vacuum input. This type of loss encompasses many different mechanisms, including absorption
in the injection optics, mode mismatch with the main interferometer, injection optical path
instability etc. Despite complex composition, it boils down to the same type of representation
as readout loss, namely

aigss =V ninj&in + 1= 77inj7¢lvac,
that leads to effectively decreased (increased) (anti-)squeezing factors for light entering the
interferometer:

e = mime " + (1= min) s (7 = mime™ + (1 — i) » (15)

where s_(4 is a new (anti-)squeezing factor.
For small enough intracavity loss &, < 1, one can write down the modified expression:

h2 52
Sh, loss —_ Sh* SQL d 2 IC , 16
SSM sqz + 2 ICSSM sin2 C + gmt MI ( )

where S is the modified expression (12) with (anti-)squeezing coefficient defined by (15):

sqz

h2
She — 25—%“ {e*+(sin A — cos A[K — cot (])* + e > (cos A+ sin A[KC — cot (])°} .

sqz
a7
Finally, one can show from this expression that in the presence of loss, the optimal values of

homodyne readout angle and the squeezing angle change and thus obtain (cf equations (409)
and (411) of [28]):

K 2K
¢* = arccot {ngz] and A" = arctan {%JSSMZ] (18)
1 4 E2e>- e 2 + &2
which after insertion in (16) gives:
h2 52 + 67257 gZICSS
Sh, opt.loss _ '’sQL d d M 2 K ) 19
SSM > Kson I Eﬁez“* + &inmr (19)

The above expression is, of course, valid only if both the homodyne angle and the squeezing
angle have the optimal frequency dependence (18), which requires additional filter cavities
that are beyond the scope of our study. However, since speedmeter’s Kgsy — const at low
frequencies, this formula represents the behaviour of quantum noise at frequencies below the
cavity pole. As our study demonstrates, loss in various elements of the interferometer have
different impact.

3. Comparison of lossless sloshing speedmeters

Each of the four configurations shown in figures 1 and 2 was setup in a numerical model
based on a set of parameters compatible with the proposed Einstein telescope [5]. In
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M2y
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X X
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| Laser:
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5m
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cP bsS lens|S1 S2
< |
5m N> 5m 10000m
5m
phase
bsB | _shifter |—]
i HD

Figure 1. Michelson sloshing speedmeter according to Purdue and Chen. The high-
lighted mirrors are omitted by Miao (RSE) and Freise (RSE, S1). This schematic
includes homodyne detection (HD), and a phase-shifter to set the required local oscillator
phase. The lens, which is required to mode-match the system within the Gaussian-beam
representation, would most likely be incorporated into the substrate of the input coupler
(S1) of the sloshing cavity in a practical implementation. All mirrors have curved sur-
faces, only the beam-splitters (BS and bsS) are flat. This produces a well mode-matched
system.

particular, it was chosen to represent 3 MW of circulating light power in 10 km-long arm
cavities, and with the beam-waist of the cavity mode constrained to be in the middle of each
cavity. Other parameters of the system were adjusted according to the design principles of
the various speedmeter systems. Within these models we consider the effect of three types
of loss: mirror loss, beam-splitter loss and cavity-coupling (mode-matching) imperfection.
The presence of such imperfections is an important design consideration as without them
it would be possible to choose a wide range of parameters that become impractical in their
presence.

The simulations presented were conducted in FINESSE [26], a software that has been
extensively compared with theory in cases that have convenient analytical solutions. This
considerably reduces the burden of accounting for multiple lossy elements within the models,
in particular as it allows the effects of imperfect mode-matching to be calculated. To this end,
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M3y
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‘ 10000m
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M1y
2078.14m
5m
M1x
m 5m BS
|Laser : ‘? [|
bsA A 5m 10000m SMx
5m
me\ {HD]
phase
shifter

Figure 2. Schematic of the sloshing-Sagnac interferometer. For convenience in mod-
elling, we choose to form the interferometer with the geometry of a right-angle isosceles
triangle, without losing applicability to ET. The core interferometer is formed by BS
and the two arm cavities formed from four mirrors of the same reflectance (M1x, M2x,
M1y, M2y). The end test masses of these resonant arm cavities are linked via steer-
ing mirrors (SMx, SMy) to a 10 km long anti-resonant cavity (M3x, M3y). The lenses
(lensy, lensx) are required to match the cavity modes and these would most likely be
incorporated into the substrates of the adjacent mirrors in a practical implementation.
All cavity mirrors have curved surfaces, the beam-splitters and steering mirrors are flat,
which produces a well mode-matched system. The signal is read out via the homodyne
detector (HD).

we model Gaussian beams and appropriately-curved mirror surfaces to produce an initially
well mode-matched system. Loss is introduced by adjusting the curvature of the matching
optics to produce the required mismatch. To simulate the opto-mechanical interactions, in
which the mirrors are free to move in response to radiation pressure, we represent mirrors sus-
pended as pendulums with a resonant frequency well below the observing band (only a single
degree of freedom is represented—that for longitudinal motion in the direction normal to the
mirror surface). In the ideal, well mode-matched Michelson sloshing speedmeter, there is no
detectable light power (2 x 10~2*W) stored in the sloshing cavity. This is not a problem for the
numerical simulations, but was considered to poorly represent a practical arrangement. There-
fore, we have chosen to build in one imperfection; a beam-splitter offset of 0.0001°. This brings
the light power in the Michelson sloshing speedmeters up to the micro-watt level, but does not
influence the sensitivity significantly. We apply the same imperfection to the sloshing Sagnac,

9
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Figure 3. Sensitivity curves for our sloshing speedmeters. Here it can be seen, that the
curves lie almost on top of each other, except the curve of the sloshing Sagnac leaves
the common trend from 0 to 0.4 Hz. All these curves were optimised for a detection
frequency of 10 Hz.

to ensure a fair comparison. In the following sections, we describe the process of modelling
each system in turn.

3.1. Michelson sloshing speedmeter

A schematic of Purdue and Chen’s interferometer is given in figure 1. The mirrors omitted by
Miao and Freise to achieve the simplified configurations are highlighted.

Initially, we model ideal, lossless mirrors. The reflectance of the end test masses (M2x, M2y
and S2) and the closed port (CP) are unity. The main beam-splitter (BS) has a transmittance of
0.5. For all other mirrors the transmittance must be optimised to achieve the desired frequency
response and speedmeter behaviour. These mirrors are the input couplers of the arm cavities
(M1x, M1y), the resonant side band extraction mirror (RSE), the extraction mirror (bsS) and
the input coupler of the sloshing cavity (S1).

In the Purdue and Chen arrangement, the input couplers of the arm cavities and the RSE
mirror are specified to have the same transmittance. When this constraint is applied, in the
lossless case, the shape of the sensitivity curve is entirely determined by the choice of the
transmission of S1 and bsS. For Miao’s speedmeter, omitting the RSE mirror leaves only
the input couplers of the arm cavities, the extraction mirror and the input coupler of the
sloshing cavity to adjust. Finally, omitting the RSE and the S1 mirror as done by Freise,
we have only the transmittance of the arm cavity input couplers and the extraction mirror to
choose.

As there is an indefinite number of different solutions to achieve a speedmeter response,
where the sensitivity curve follows the standard quantum limit, it was necessary to intro-
duce an additional constraint: the sensitivity curves should follow the standard quantum limit

10



Class. Quantum Grav. 37 (2020) 085022 S H Huttner et al

Table 1. Parameters for the different Michelson speedmeters in the initial simulations
with lossless mirrors and beam-splitters. The sensitivity curve for the speedmeter accord-
ing to Purdue and Chen is independent of the transmittance of the mirrors M1 and RSE
as long they have the same value. This is not the case for Miao’s and Freise’s speedmeter,
where the RSE mirror is omitted. In the following sections we change only the loss of
the individual optical components. Since the sum of the transmittance, reflectance and
loss is unity, the reflectance of the individual component gets reduced by the specified

loss.

Purdue & Chen Miao Freise
Transmittance (—)
M1 0.07 0.07 0.07
RSE 0.07 — —
bsS 0.0178 0.9485 0.9828
S1 0.0013 0.75 —
BS 0.5 0.5 0.5
M2 0 0 0
S2 0 0 0
CP 0 0 0
Losses (—)
All components 0 0 0
Focal length (m)
Lens 2782.15 2782.15 2782.15
Light power (W)
In the arm cavities 3 x 10° 3 x 10° 3 % 10°
In the sloshing cavities 9.7 x 107° 9.7 x 107° 9.7 x 10°°
Offset (deg)
BS 0.0001 0.0001 0.0001
Laser wavelength (nm)
Nd:YAG 1064 1064 1064

up to 80 Hz, and overlap at higher frequencies. We proceeded by fixing the transmittances
of the input couplers of all the interferometers to 0.07, and the same value was chosen for
the RSE mirror for Purdue and Chen’s speedmeter. The value chosen is unimportant for the
lossless case of the Purdue and Chen configuration, since the interferometer is impedance-
matched, and therefore independent of the actual transmission of the input couplers and the
RSE mirror. However, the particular choice becomes significant when loss is present, and
hence was made in anticipation of the effect of loss. In addition, with the chosen value, all
the speedmeters then operate with the same laser input power. Working from that basis, we
then found the remaining transmittances for all the other mirrors, and for each design, so that
their sensitivity curves overlap as shown on figure 3. The resulting parameters are listed in the
table 1.

In the process of simulating the various options, we next optimise the local oscillator phase
to maximise the sensitivity. As noted above, we have chosen to carry out this optimisation at
a target frequency of 10 Hz. The choice of optimisation frequency has only a marginal effect
on the outcome compared to other frequencies well below the chosen upper limit of 80 Hz.
The closely-matched sensitivity curves obtained in the lossless case form a basis for the further
exploration of the models including loss and squeezing. We note that the optimisation carried

1
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Table 2. Parameters of the sloshing Sagnac interferometer using lossless mirrors/beam-
splitters. In the following sections we change only the loss of the individual optical com-
ponents. Since the sum of the transmittance, reflectance and loss is unity, the reflectance
of the individual component gets reduced by the specified loss.

Transmittance (—)

BS 0.5
SMx/y 0
M1lx/y, M2x/y 0.07
M3x/y 0.035
Loss (—)

All components 0
Focal length (m)

Lensx/y 3043.33
Light power (W)

In the resonant arm cavities 3 x 10°
In the anti-resonant cavity 485
Offset (deg)

BS 0.0001

Laser wavelength (nm)
Nd:YAG 1064

out in this work was done by searching on a fine grid within the relevant parameter space and
maximising the snr at 10 Hz.

3.2. Sloshing Sagnac speedmeter

In a previous paper [16], we have dealt extensively with the ideal, lossless sloshing Sagnac
speedmeter, and we refer to this paper for the detail. Here we present the schematic layout
(figure 2), and the modified optical parameters (table 2) required to achieve the same perfor-
mance as the Michelson sloshing speedmeters, see figure 3. The approach to optimisation and
fitting is the same as those for the sloshing Michelson case.

4. The effect of optical loss on four speedmeter designs

In this section, we discuss the effect of incorporating loss into our model of the four speedme-
ters under consideration. The individual loss values chosen for mirrors and beam-splitters are
considered to be a realistic estimate of values that should be typically available in the construc-
tion of the next generation of gravitational wave detectors (i.e. lower than currently available
by a small factor).

Starting with the Michelson sloshing speedmeters, we have chosen a loss of 30 ppm
for all mirrors (M1, M2, RSE, S1, S2, CP), a loss of 100 ppm for all beam-splitters (BS,
bsS), a 99 % detection efficiency and a loss of 1% due to mode matching error. The mode
matching error is inserted by changing the focal length of the lens by 1 %. For the sloshing
Sagnac speedmeter, the same loss values apply. Since we have two lenses in the sloshing
Sagnac we have chosen to insert the mode mismatch at one lens only, as for the Michelson
speedmeters.
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Figure 4. Sensitivity curves for the different sloshing speedmeters with all the individ-
ual loss, as specified in tables 3 and 4, inserted. The curves are optimised for the local
oscillator phase at a detection frequency of 10 Hz.

Generally it can be said that with the introduction of loss in any interferometer, the stored
light power is reduced. Usually, in a practical implementation, the maximum light power is
limited by thermal distortion and not by the available power, therefore we choose to re-adjust
the injected light power to keep the circulating light power at 3 MW, for a fair comparison.
Then, by inserting all the loss into our simulations, we obtain the sensitivity curves shown in
figure 4. It should be noted, that the mirror parameters were not re-adjusted after the loss values
were inserted.

With the chosen values of loss, the situation changes: the sensitivity curves for the different
designs show differences in particular in the frequency range between 1 Hz and 20 Hz, corre-
sponding to the re-introduction of back-action noise into the QND measurement. As described
above, these curves were optimised for a detection frequency of 10 Hz. The choice of this
frequency, within the band described above, does not materially affect the result in the case
of a system with loss. When one compares the magnitude of the sensitivity curves at a high
frequency, e.g. 1000 Hz, one can see that there the curves are not affected by the optimisa-
tion 10 Hz. It can be seen that there is almost no difference in performance in the presence
of loss between the sloshing Sagnac speedmeter and the speedmeter from Purdue and Chen.
The speedmeters from Freise and Miao exhibit increased degradation of performance in the
presence of loss.

By inserting only one individual loss source at a time and comparing the result with our
previous lossless simulations, we found the sensitivity degradation due to each separate optical
component and identified that with the biggest influence on the loss budget. The loss factor is
determined by equating the ideal (lossless) sensitivity to 100 % and, using the rule of three> to

5x% = loss value/lossless value x 100%—the loss value and the lossless value are from the simulation.
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Table 3. Michelson sloshing speedmeters: difference in percentage® from the ideal sen-
sitivity curve when inserting only one individual loss. For completeness we have inserted
the total loss (all losses) in the table. For each of these values, the sensitivity curve was
optimised for 10 Hz, homodyne phase was adjusted, and the arm-cavity power was

maintained at 3 MW.

Optics Loss Purdue & Chen Miao Freise
BS 100 ppm 0.17 0.16  0.17
M1x/y (common) 30 ppm 0.05 0.05 0.05
M1x/y (differential) 60 ppm/0 ppm 0.05 0.05 0.05
M2x/y (common) 30 ppm 0.02 0.02 0.02
M2x/y (differential) 60 ppm/0 ppm 0.02 0.02 0.02
RSE 30 ppm 0.05 — —

bsS 100 ppm 0.14 2.97 8.96
CpP 30 ppm 0 0.46 1.46
S1 30 ppm 1.49 1.90 —

S2 30 ppm 1.46 1.43 1.48
Detection 1% 0.98 095 099
Mode matching (via lens) 1% 2.67 47.57 16.50
All losses 6.84 5249 27.33

Table 4. Sloshing Sagnac speedmeter: difference in percentage® from the ideal sensi-
tivity curve when inserting only one individual loss. For completeness we have inserted
the total loss (all losses) in the table. For each of these values, the sensitivity curves are
optimised for 10 Hz and the arm cavities power was kept at 3 MW.

Optics Loss Sloshing Sagnac
BS 100 ppm 0.01
M1x/y (common) 30 ppm 0.02
M1x/y (differential) 60 ppm/0 ppm 0.02
M2x/y (common) 30 ppm 0.05
M2x/y (differential) 60 ppm/0 ppm 0.05
M3x/y 30 ppm 2.72
SMx/y 30 ppm 0.05
Detection 1% 0.94
Mode matching (via lens) 1% 0.49
All losses 3.62

calculate the relative sensitivity for the lossy system in terms of a percentage. The outcomes

6

are given in tables 3 and 4. The sum of the individual loss factors gives approximately the total
loss factor. The small discrepancy is due to the complex interactions within the coupled-cavity
systems that lead to slightly different levels of optical power other than in the arm cavities
where the power is kept constant at 3 MW.

For all the Michelson sloshing speedmeters the dominant loss source is due to the mode-
matching error. In the sloshing Sagnac the biggest individual loss factors come from the mirrors
M3x and M3y. The presence of coupled cavities also explains that, when we add loss on ITMx

6 Difference in % = x% — 100%.
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Figure 5. Sensitivity curves for lossy speedmeters when applying a 10 dB squeezing.
The curves are simultaneously optimised for the local oscillator phase and the squeezing
angle at a detection frequency of 10 Hz.

or ITMy, this has a greater effect that when we apply the same loss to ETMx or ETMy (in
the latter case only the power within the arm cavity is affected, and this is held constant as
explained above).

5. The effect of squeezing on four speedmeter designs

In this section, we present the response of the four lossy speedmeters to squeez-
ing. Generally, appropriately-adjusted squeezing in speedmeters pushes the low-frequency
(speedmeter-response) part of the sensitivity curve down, at the cost of a deterioration at the
high-frequency part at and above the arm-cavity corner frequency, where the squeezing phase
chosen for low-frequency is not optimal. We include in our models the loss specified in tables 3
and 4. In addition we apply 10 dB of squeezing in the model of the read-out system of the
detector.

To accomplish this in the Michelson speedmeters, squeezed light is injected (in the model)
between the extraction mirror (bsS) and the homodyne detector (HD) via a model-element
representing a Faraday isolator. For the sloshing Sagnac speedmeter, the corresponding point
of injection is between the beam-splitter (BS) and the homodyne detector (HD). To obtain
the best sensitivity for each speedmeter type, we optimise the local oscillator phase and the
squeezing angle at a frequency of 10 Hz, as given in figure 5, and following the principles
described in the earlier sections.

Loss limits the gain in sensitivity that can be obtained through the application of squeez-
ing in a frequency-dependent manner. In the region below approximately 20 Hz, with the
assumed levels of loss, none of the speedmeters reaches the full potential from squeezing (i.e.
10 dB improvement). The sensitivity curves, while still optimised at 10 Hz, show an overall
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improvement at frequencies up to approximately 100 Hz, we re-iterate that these curves rep-
resent frequency-independent squeezing. The decrease in improvement at higher frequencies
could be avoided by applying frequency-dependent squeezing, considered to be beyond the
scope of the present work. The main observation arising from these results is that the perfor-
mance in the presence of loss and squeezing improves in line with increasing complexity of
the speedmeter.

6. Conclusion

The starting point for the current exploration was to establish equivalent speedmeters of each
class, with almost identical sensitivity curves. By equivalent speedmeters we mean we used
the same arm cavity length and the same circulating light power in the arm cavities. We have
chosen to make the transmissions of the input couplers the same, which corresponds that all our
investigated speedmeters have the same input power at the laser. Then we found the values of
the remaining mirrors. The remaining mirrors vary in number from one to three, such that the
more mirrors a speedmeter type has, the more design-freedom there is. However, this freedom
comes at the cost of more complexity in construction and in the control system required to keep
the cavities on resonance or anti-resonance, and therefore it is important to consider whether
the extra complexity of one type over another is merited, or under which circumstances it
may be.

The outcome of this comparison of four speedmeter configurations indicates that their sen-
sitivity to gravitational waves is identical for the chosen parameters when no loss is considered.
With lossy optics, however, the situation changes: now the sloshing Sagnac and the speedme-
ter of Purdue and Chen display the best (essentially identical) sensitivities when optimised at
10 Hz, followed in performance terms by Freise’s and Miao’s speedmeters. With the insertion
of 10 dB squeezing in our lossy speedmeters, the sensitivity improves; but the improvement is
greater for the more complex speedmeters. In this situation, the sloshing Sagnac displays the
best performance, followed by the speedmeter from Purdue and Chen.

With regard to the optimisation frequency of 10 Hz, by sampling cases for each speedmeter
type, optimised for lower or higher frequency, we obtained results that differed only slightly for
reasonable changes in optimisation frequency within the band in which the systems operate as
speedmeters. We carried out our analysis in the context of the proposed Einstein telescope, for
only one set of parameters. Had we chosen a different set of parameters, such as by lifting the
constraint placed on Purdue and Chen’s speedmeter that the input couplers of the arm cavities
and the extraction mirrors should have the same transmission, or made other changes of this
kind, the outcomes may be different. This work is, therefore, best considered to be an initial
evaluation of the performance of a potentially interesting subset of speedmeters: the sloshing
speedmeters.
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