13 research outputs found

    31P-NMR and differential scanning calorimetry studies for determining vesicles drug physical state and fraction in alendronate liposomes

    No full text
    Background: A liposomal delivery system requires a complete understanding of the physicochemical characteristics of the drug– liposome system in order to predict their behavior and stability in-vitro and in-vivo. Objectives: Develop a rapid and simple experimental method to determine the fractions of the drug, alendronate (ALN), encapsulated and as a free form distributed in the liposomal suspension, and the physical state of the encapsulated drug. Methods: 31P-NMR measurements utilizing Ga+3 as a shifting reagent in comparison to HPLC determinations, theoretical calculations and differential scanning calorimetry (DSC) studies of various liposomal ALN formulations. Results: The 31P-NMR demonstrated that titrating liposomal ALN with increasing amounts of Ga+3 induced a signifi cant shift in the exterior fraction without changing the interior fraction. Quantitative determination of the encapsulated and non-encapsulated fractions of ALN has been achieved at Ga+3 concentrations of 3.2-25mM. The DSC study revealed that none of the formulation ingredients is in a solid phase. Conclusions: 31P-NMR was found to be sensitive enough to allow accurate differentiation of the distributed fractions of ALN, encapsulated and the non-encapsulated free form. Based on theoretical calculations and DSC analysis it can be concluded that ALN is dissolved in the aqueous core of the liposome.This work was supported in part by a grant from Biorest Ltd., Israel (GG). GG is affi liated with the David R. Bloom Center for Pharmacy at The Hebrew University of Jerusalem

    Long-Term Pulmonary Damage in Surviving Antitoxin-Treated Mice following a Lethal Ricin Intoxication

    No full text
    Ricin, a highly potent plant-derived toxin, is considered a potential bioterrorism weapon due to its pronounced toxicity, high availability, and ease of preparation. Acute damage following pulmonary ricinosis is characterized by local cytokine storm, massive neutrophil infiltration, and edema formation, resulting in respiratory insufficiency and death. A designated equine polyclonal antibody-based (antitoxin) treatment was developed in our laboratory and proved efficacious in alleviating lung injury and increasing survival rates. Although short-term pathogenesis was thoroughly characterized in antitoxin-treated mice, the long-term damage in surviving mice was never determined. In this study, long-term consequences of ricin intoxication were evaluated 30 days post-exposure in mice that survived antitoxin treatment. Significant pulmonary sequelae were demonstrated in surviving antitoxin-treated mice, as reflected by prominent histopathological changes, moderate fibrosis, increased lung hyperpermeability, and decreased lung compliance. The presented data highlight, for the first time to our knowledge, the possibility of long-term damage development in mice that survived lethal-dose pulmonary exposure to ricin due to antitoxin treatment

    Induction of Innate Immune Response by TLR3 Agonist Protects Mice against SARS-CoV-2 Infection

    No full text
    SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection

    Matrix Metalloproteinases Expression Is Associated with SARS-CoV-2-Induced Lung Pathology and Extracellular-Matrix Remodeling in K18-hACE2 Mice

    No full text
    The COVID-19 pandemic caused by the SARS-CoV-2 infection induced lung inflammation characterized by cytokine storm and fulminant immune response of both resident and migrated immune cells, accelerating alveolar damage. In this work we identified members of the matrix metalloprotease (MMPs) family associated with lung extra-cellular matrix (ECM) destruction using K18-hACE2-transgenic mice (K18-hACE2) infected intranasally with SARS-CoV-2. Five days post infection, the lungs exhibited overall alveolar damage of epithelial cells and massive leukocytes infiltration. A substantial pulmonary increase in MMP8, MMP9, and MMP14 in the lungs post SARS-CoV-2 infection was associated with degradation of ECM components including collagen, laminin, and proteoglycans. The process of tissue damage and ECM degradation during SARS-CoV-2 lung infection is suggested to be associated with activity of members of the MMPs family, which in turn may be used as a therapeutic intervention
    corecore