10 research outputs found
LogSpin: a simple, economical and fast method for RNA isolation from infected or healthy plants and other eukaryotic tissues
<p>Abstract</p> <p>Background</p> <p>Rapid RNA extraction is commonly performed with commercial kits, which are very expensive and can involve toxic reagents. Most of these kits can be used with healthy plant tissues, but do not produce consistently high-quality RNA from necrotic fungus-infected tissues or fungal mycelium.</p> <p>Findings</p> <p>We report on the development of a rapid and relatively inexpensive method for total RNA extraction from plants and fungus-infected tissues, as well as from insects and fungi, based on guanidine hydrochloride buffer and common DNA extraction columns originally used for the extraction and purification of plasmids and cosmids.</p> <p>Conclusions</p> <p>The proposed method can be used reproducibly for RNA isolation from a variety of plant species. It can also be used with infected plant tissue and fungal mycelia, which are typically recalcitrant to standard nucleic acid extraction procedures.</p
Genome-wide data from medieval German Jews show that the Ashkenazi founder event pre-dated the 14th century
We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genet-ically similar to modern AJ, but they show more variability in Eastern European-related ancestry than mod-ern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.The study was funded by the Israel Science Foundation grant 407/17 and the United States-Israel Binational Science Foundation grant 2017024 to S.C., by the National Science Foundation (USA) grants 1912776 and 0922374 to V.R., by the MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future" grant "Ayudas para contratos Ramon y Cajal" to I.O., and by the following grants to D.R.: NIH grants GM100233 and HG012287; the Allen Discovery Center program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family Foundation; John Templeton Foundation grant 61220; a private gift from Jean-Francois Clin; and the Howard Hughes Medical Institute
The landscape of autosomal-recessive pathogenic variants in European populations reveals phenotype-specific effects
Contains fulltext :
232952.pdf (Publisher’s version ) (Closed access
XX Ovarian Dysgenesis Is Caused by a PSMC3IP/HOP2 Mutation that Abolishes Coactivation of Estrogen-Driven Transcription
XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder characterized by lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism as a result of streak gonads. Most cases are unexplained but thought to be autosomal recessive. We elucidated the genetic basis of XX-GD in a highly consanguineous Palestinian family by using homozygosity mapping and candidate-gene and whole-exome sequencing. Affected females were homozygous for a 3Â bp deletion (NM_016556.2, c.600_602del) in the PSMC3IP gene, leading to deletion of a glutamic acid residue (p.Glu201del) in the highly conserved C-terminal acidic domain. Proteasome 26S subunit, ATPase, 3-Interacting Protein (PSMC3IP)/Tat Binding Protein Interacting Protein (TBPIP) is a nuclear, tissue-specific protein with multiple functions. It is critical for meiotic recombination as indicated by the known role of its yeast ortholog, Hop2. Through the C terminus (not present in yeast), PSMC3IP also coactivates ligand-driven transcription mediated by estrogen, androgen, glucocorticoid, progesterone, and thyroid nuclear receptors. In cell lines, the p.Glu201del mutation abolished PSMC3IP activation of estrogen-driven transcription. Impaired estrogenic signaling can lead to ovarian dysgenesis both by affecting the size of the follicular pool created during fetal development and by failing to counteract follicular atresia during puberty. PSMC3IP joins previous genes known to be mutated in XX-GD, the FSH receptor, and BMP15, highlighting the importance of hormonal signaling in ovarian development and maintenance and suggesting a common pathway perturbed in isolated XX-GD. By analogy to other XX-GD genes, PSMC3IP is also a candidate gene for premature ovarian failure, and its role in folliculogenesis should be further investigated
Accurate Molecular Classification of Renal Tumors Using MicroRNA Expression
Subtypes of renal tumors have different genetic backgrounds, prognoses, and responses to surgical and medical treatment, and their differential diagnosis is a frequent challenge for pathologists. New biomarkers can help improve the diagnosis and hence the management of renal cancer patients. We extracted RNA from 71 formalin-fixed paraffin-embedded (FFPE) renal tumor samples and measured expression of more than 900 microRNAs using custom microarrays. Clustering revealed similarity in microRNA expression between oncocytoma and chromophobe subtypes as well as between conventional (clear-cell) and papillary tumors. By basing a classification algorithm on this structure, we followed inherent biological correlations and could achieve accurate classification using few microRNAs markers. We defined a two-step decision-tree classifier that uses expression levels of six microRNAs: the first step uses expression levels of hsa-miR-210 and hsa-miR-221 to distinguish between the two pairs of subtypes; the second step uses either hsa-miR-200c with hsa-miR-139-5p to identify oncocytoma from chromophobe, or hsa-miR-31 with hsa-miR-126 to identify conventional from papillary tumors. The classifier was tested on an independent set of FFPE tumor samples from 54 additional patients, and identified correctly 93% of the cases. Validation on qRT-PCR platform demonstrated high correlation with microarray results and accurate classification. MicroRNA expression profiling is a very effective molecular bioassay for classification of renal tumors and can offer a quantitative standardized complement to current methods of tumor classification