6 research outputs found

    Impaired Very-Low-Density Lipoprotein catabolism links hypoglycemia to hypertriglyceridemia in Glycogen Storage Disease type Ia

    Get PDF
    International audiencePrevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc-/- ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc-/- mice. In hypoglycemic conditions, enhanced adipose tissue lipolysis was the main driver of liver steatosis, supported by elevated free fatty acid concentrations in GSD Ia mice and GSD Ia patients. Plasma very-low-density lipoprotein (VLDL) levels were increased in GSD Ia patients and in normoglycemic L-G6pc-/- mice, and further elevated in hypoglycemic L-G6pc-/- mice. VLDL-TG secretion rates were doubled in normo- and hypoglycemic L-G6pc-/- mice, while VLDL-TG catabolism was selectively inhibited in hypoglycemic L-G6pc-/- mice. In conclusion, fasting-induced hypoglycemia in L-G6pc-/- mice promotes adipose tissue lipolysis and arrests VLDL catabolism. This mechanism likely contributes to aggravated liver steatosis and dyslipidemia in GSD Ia patients with poor glycemic control and may explain clinical heterogeneity in hypertriglyceridemia between GSD Ia patients

    Zonation of glucose and fatty acid metabolism in the liver:Mechanism and metabolic consequences

    No full text
    The liver is generally considered as a relatively homogeneous organ containing four different cell types. It is however well-known that the liver is not homogeneous and consists of clearly demarcated metabolic zones. Hepatocytes from different zones show phenotypical heterogeneity in metabolic features, leading to zonation of metabolic processes across the liver acinus. Zonation of processes involved in glucose and fatty acid metabolism is rather flexible and therefore prone to change under (patho)physiological conditions. Hepatic zonation appears to play an important role in the segregation of the different metabolic pathways in the liver. As a consequence, perturbations in metabolic zonation may be a part of metabolic liver diseases. The metabolic syndrome is characterized by the inability of insulin to adequately suppress hepatic gluconeogenesis, leading to hyperglycemia, hyperinsulinemia and eventually to type II diabetes. As insulin promotes lipogenesis through the transcription factor sterol regulatory element binding protein (SREBP)-1c, one would expect that lipogenesis should also be impaired in insulin-resistant states. However, in the metabolic syndrome hepatic de novo lipogenesis is increased, leading to hyperlipidemia and hepatosteatosis, primarily in the pericentral zone. These observations suggest the co-existence of insulin resistant glucose metabolism and insulin sensitive lipid metabolism in the metabolic syndrome. Here we provide a theoretical framework to explain this so-called 'insulin signaling paradox' in the context of metabolic zonation of the liver. (C) 2013 Elsevier Masson SAS. All rights reserved

    A systems biology approach reveals the physiological origin of hepatic steatosis induced by liver X receptor activation

    No full text
    Liver X receptor (LXR) agonists exert potent antiatherosclerotic actions but simultaneously induce excessive triglyceride (TG) accumulation in the liver. To obtain a detailed insight into the underlying mechanism of hepatic TG accumulation, we used a novel computational modeling approach called analysis of dynamic adaptations in parameter trajectories (ADAPT). We revealed that both input and output fluxes to hepatic TG content are considerably induced on LXR activation and that in the early phase of LXR agonism, hepatic steatosis results from only a minor imbalance between the two. It is generally believed that LXR-induced hepatic steatosis results from increased de novo lipogenesis (DNL). In contrast, ADAPT predicted that the hepatic influx of free fatty acids is the major contributor to hepatic TG accumulation in the early phase of LXR activation. Qualitative validation of this prediction showed a 5-fold increase in the contribution of plasma palmitate to hepatic monounsaturated fatty acids on acute LXR activation, whereas DNL was not yet significantly increased. This study illustrates that complex effects of pharmacological intervention can be translated into distinct patterns of metabolic regulation through state-of-the-art mathematical modeling

    Hepatic ChREBP activation limits NAFLD development in a mouse model for Glycogen Storage Disease type Ia

    No full text
    Glycogen storage disease type Ia (GSD Ia) is an inborn error of metabolism caused by defective glucose-6-phosphatase (G6PC) activity. GSD Ia patients exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have previously shown that the activity of Carbohydrate Response Element Binding Protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD Ia. In the current study we assessed the contribution of ChREBP to non-alcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD Ia. Liver-specific G6pc knockout (L-G6pc-/- ) mice were treated with AAV2/8-shChREBP to normalize hepatic ChREBP activity to levels observed in wildtype (L-G6pc+/+ ) mice receiving AAV8-shScramble. Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc-/- mice. This was associated with hepatic accumulation of G6P, glycogen and lipids, while the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and VLDL-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis, but also strongly suppressed hepatic VLDL lipidation hence promoting the storage of 'old fat'. Interestingly, enhanced VLDL-TG secretion in shScramble-treated L-G6pc-/- mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins MTTP and TM6SF2, the latter being confirmed by ChIP-PCR. CONCLUSION: Attenuation of hepatic ChREBP induction in GSD Ia liver aggravates hepatomegaly due to further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a novel ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD Ia by balancing hepatic TG production and -secretion
    corecore