21 research outputs found

    Late Holocene evolution of a coupled, mud-dominated delta plain-chenier plain system, coastal Louisiana, USA

    Get PDF
    Abstract. Major deltas and their adjacent coastal plains are commonly linked by means of coast-parallel fluxes of water, sediment, and nutrients. Observations of the evolution of these interlinked systems over centennial to millennial timescales are essential to understand the interaction between point sources of sediment discharge (i.e. deltaic distributaries) and adjacent coastal plains across large spatial (i.e. hundreds of kilometres) scales. This information is needed to constrain future generations of numerical models to predict coastal evolution in relation to climate change and other human activities. Here we examine the coastal plain (Chenier Plain, CP) adjacent to the Mississippi River delta, one of the world's largest deltas. We use a refined chronology based on 22 new optically stimulated luminescence and 22 new radiocarbon ages to test the hypothesis that cyclic Mississippi subdelta shifting has influenced the evolution of the adjacent CP. We show that over the past 3 kyr, accumulation rates in the CP were generally 0–1 Mt yr−1. However, between 1.2 and 0.5 ka, when the Mississippi River shifted to a position more proximal to the CP, these rates increased to 2.9 ±1.1 Mt yr−1 or 0.5–1.5 % of the total sediment load of the Mississippi River. We conclude that CP evolution during the past 3 kyr was partly a direct consequence of shifting subdeltas, in addition to changing regional sediment sources and modest rates of relative sea-level (RSL) rise. The RSL history of the CP during this time period was constrained by new limiting data points from the base of overwash deposits associated with the cheniers. These findings have implications for Mississippi River sediment diversions that are currently being planned to restore portions of this vulnerable coast. Only if such diversions are located in the western portion of the Mississippi Delta plain could they potentially contribute to sustaining the CP shoreline. Our findings highlight the importance of a better understanding of mud-dominated shorelines that are often associated with major deltas, in light of the enormous investments in coastal management and restoration that will likely be made around the globe, now and especially later during this century. </jats:p

    Targeting the mesolithic: Interdisciplinary approaches to archaeological prospection inthe Brown Bank area, southern North Sea

    Get PDF
    YesThis paper describes some results of the research undertaken over the Brown Bank area during recent (2018/2019) geoarchaeological surveys in the North Sea which included seismic imaging, shallow (vibro)coring and dredging. It examines the benefits of simultaneous high-resolution (0.5 – 1m) and ultra-high-resolution (10 – 20cm) seismic survey techniques and a staged approach to resolving the submerged Holocene landscape in the highest possible detail for the purpose of targeted prospecting for archaeological material from the Mesolithic landscape of Doggerland. The materials recovered from such surveys offer significantly greater information due to an enhanced understanding of the context in which they were recovered. The importance of this information cannot be understated archaeologically, as few locations on land provide the opportunity to recover archaeological finds in situ within preserved landscapes. Moreover, it allows offshore areas of potential human activity to be prospected with some certainty of success.ER

    Sea-level change in the Dutch Wadden Sea

    Get PDF
    Rising sea levels due to climate change can have severe consequences for coastal populations and ecosystems all around the world. Understanding and projecting sea-level rise is especially important for low-lying countries such as the Netherlands. It is of specific interest for vulnerable ecological and morphodynamic regions, such as the Wadden Sea UNESCO World Heritage region. Here we provide an overview of sea-level projections for the 21st century for the Wadden Sea region and a condensed review of the scientific data, understanding and uncertainties underpinning the projections. The sea-level projections are formulated in the framework of the geological history of the Wadden Sea region and are based on the regional sea-level projections published in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). These IPCC AR5 projections are compared against updates derived from more recent literature and evaluated for the Wadden Sea region. The projections are further put into perspective by including interannual variability based on long-term tide-gauge records from observing stations at Den Helder and Delfzijl. We consider three climate scenarios, following the Representative Concentration Pathways (RCPs), as defined in IPCC AR5: the RCP2.6 scenario assumes that greenhouse gas (GHG) emissions decline after 2020; the RCP4.5 scenario assumes that GHG emissions peak at 2040 and decline thereafter; and the RCP8.5 scenario represents a continued rise of GHG emissions throughout the 21st century. For RCP8.5, we also evaluate several scenarios from recent literature where the mass loss in Antarctica accelerates at rates exceeding those presented in IPCC AR5. For the Dutch Wadden Sea, the IPCC AR5-based projected sea-level rise is 0.07±0.06m for the RCP4.5 scenario for the period 2018–30 (uncertainties representing 5–95%), with the RCP2.6 and RCP8.5 scenarios projecting 0.01m less and more, respectively. The projected rates of sea-level change in 2030 range between 2.6mma−1 for the 5th percentile of the RCP2.6 scenario to 9.1mma−1 for the 95th percentile of the RCP8.5 scenario. For the period 2018–50, the differences between the scenarios increase, with projected changes of 0.16±0.12m for RCP2.6, 0.19±0.11m for RCP4.5 and 0.23±0.12m for RCP8.5. The accompanying rates of change range between 2.3 and 12.4mma−1 in 2050. The differences between the scenarios amplify for the 2018–2100 period, with projected total changes of 0.41±0.25m for RCP2.6, 0.52±0.27m for RCP4.5 and 0.76±0.36m for RCP8.5. The projections for the RCP8.5 scenario are larger than the high-end projections presented in the 2008 Delta Commission Report (0.74m for 1990–2100) when the differences in time period are considered. The sea-level change rates range from 2.2 to 18.3mma−1 for the year 2100. We also assess the effect of accelerated ice mass loss on the sea-level projections under the RCP8.5 scenario, as recent literature suggests that there may be a larger contribution from Antarctica than presented in IPCC AR5 (potentially exceeding 1m in 2100). Changes in episodic extreme events, such as storm surges, and periodic (tidal) contributions on (sub-)daily timescales, have not been included in these sea-level projections. However, the potential impacts of these processes on sea-level change rates have been assessed in the report

    Corrigendum to “Holocene sea-level database for the Rhine-Meuse Delta, The Netherlands: Implications for the pre-8.2 ka sea-level jump” [Quat. Sci. Rev. 214 (2019) 68–86](S0277379117310156)(10.1016/j.quascirev.2019.05.001)

    No full text
    When the article was first published there was a decimal error in the reporting of the accuracy of the event-timing of the pre-8.2 ka sea-level jump at the Rotterdam sites, in section 5.2 on page 79–80 (including Fig. 7) and the repeat of the result in the Conclusions (page 83). The onset age uncertainty for the first phase of the jump event was reported as 8.44 ± 0.41, but should have been 8.44 ± 0.041 (twice on page 80, once in Fig. 7, once on page 83). That for the second phase was reported as 8.22 ± 0.65, but should have been of 8.22 ± 0.065 (page 80). The graphical error boxes in the figures and the data supplement values are correct. The correct Figure 7 is printed below: [Figure presented] The same error was also made in citing the event-onset age uncertainty of our previous assessment (Hijma and Cohen, 2010): was reported as 8.45 ± 0.44, but should have been 8.45 ± 0.044 (page 79). The authors apologise for any inconvenience caused

    Towards network assessment of permanent railway track deformation

    No full text
    The permanent railway track deformation caused by regular train traffic is important for infrastructure managers and railway contractors, as it determines the railway track quality. Although several successful approaches have been made to address the topic of the permanent railway track deformation, these have only been applied at specific locations, and have not yet been successfully applied at a network level. This paper presents a methodology that can be applied at the network level, by making use of a stochastic subsoil model to characterise the subsoil uncertainty and variability along the railway line, and by combining it with a dynamic train-track model and a cumulative cyclic deformation model. This methodology is illustrated by analysing a railway track section of 9 km in the Netherlands. The effects of the train service, such as train speed and axle loads, on the permanent deformation of the track are quantified. The proposed methodology has been partially validated against results of the dynamic stiffness obtained during the passage of a measurement train. The results illustrate the added value of this methodology for infrastructure managers and railway contractors as it allows for the quantification, at network level, of the consequences of train service changes for the future state of the railway network

    Depth-limiting resistant layers restrict dimensions and positions of estuarine channels and bars

    Get PDF
    Estuaries comprise channels vital for economic activity and bars as valuable habitats. They are increasingly under human-induced pressures (e.g. sea-level rise and dredging), resulting in morphological changes that affect navigability, flood safety and ecology. Antecedent geology may strongly steer how estuary channels will adapt to these pressures, but is surprisingly absent in most models. Here geological data and a unique bathymetry dataset covering 200 years from the Ems-Dollard estuary (Netherlands/Germany) were used to demonstrate how local resistant layers force the position and dimensions of confluences and bars on the scale of an entire estuary. These layers limit channel depth and consequently cause widening, resulting in mid-channel bar formation and increased channel curvature. This could lead to unexpected estuary widening and may cause land loss in densely populated areas. With increasing channel volume (as may happen again under future sea-level rise), resistant layers in the estuary's substrate become more exposed, which enhances their effects. Many systems around the world contain shallow resistant layers that potentially constrain estuary channel dimensions and steer bank erosion. This highlights that resistant layer effects are important to consider as part of mixed depositional processes in coastal environments. It is therefore necessary to globally account for the effects of inherited resistant layers in the possible response of estuaries to sea-level rise and increased tidal penetration
    corecore