831 research outputs found
Radiation effects control: Eyes, skin
Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited
funcX: A Federated Function Serving Fabric for Science
Exploding data volumes and velocities, new computational methods and
platforms, and ubiquitous connectivity demand new approaches to computation in
the sciences. These new approaches must enable computation to be mobile, so
that, for example, it can occur near data, be triggered by events (e.g.,
arrival of new data), be offloaded to specialized accelerators, or run remotely
where resources are available. They also require new design approaches in which
monolithic applications can be decomposed into smaller components, that may in
turn be executed separately and on the most suitable resources. To address
these needs we present funcX---a distributed function as a service (FaaS)
platform that enables flexible, scalable, and high performance remote function
execution. funcX's endpoint software can transform existing clouds, clusters,
and supercomputers into function serving systems, while funcX's cloud-hosted
service provides transparent, secure, and reliable function execution across a
federated ecosystem of endpoints. We motivate the need for funcX with several
scientific case studies, present our prototype design and implementation, show
optimizations that deliver throughput in excess of 1 million functions per
second, and demonstrate, via experiments on two supercomputers, that funcX can
scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and
Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap
with arXiv:1908.0490
inTrack: High Precision Tracking of Mobile Sensor Nodes
Radio-interferometric ranging is a novel technique that allows
for fine-grained node localization in networks of inexpensive COTS
nodes. In this paper, we show that the approach can also be applied
to precision tracking of mobile sensor nodes. We introduce inTrack, a
cooperative tracking system based on radio-interferometry that features
high accuracy, long range and low-power operation. The system utilizes
a set of nodes placed at known locations to track a mobile sensor. We
analyze how target speed and measurement errors affect the accuracy of
the computed locations. To demonstrate the feasibility of our approach,
we describe our prototype implementation using Berkeley motes. We
evaluate the system using data from both simulations and field tests
Stress corrosion in titanium alloys and other metallic materials
Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC
Recommended from our members
Low-Pressure Distillation of a Portion of the Fuel Carrier Salt From the Molten Salt Reactor Experiment.
Optimal and Automated Deployment for Microservices
Microservices are highly modular and scalable Service Oriented Architectures.
They underpin automated deployment practices like Continuous Deployment and
Autoscaling. In this paper, we formalize these practices and show that
automated deployment - proven undecidable in the general case - is
algorithmically treatable for microservices. Our key assumption is that the
configuration life-cycle of a microservice is split into two phases: (i)
creation, which entails establishing initial connections with already available
microservices, and (ii) subsequent binding/unbinding with other microservices.
To illustrate the applicability of our approach, we implement an automatic
optimal deployment tool and compute deployment plans for a realistic
microservice architecture, modeled in the Abstract Behavioral Specification
(ABS) language
- …