1,082 research outputs found

    Evaluating Communication and Collaboration Among Healthcare Students

    Get PDF
    The purpose of this pilot study was to determine if the Interprofessional Collaborator Assessment Rubric (ICAR): Communication and Collaboration Dimensions would demonstrate good inter-rater reliability and be a useful and efficient tool to evaluate professional communication and collaboration between occupational therapy (OT) and physician assistant (PA) students. An additional aim of this study was to assess students’ thoughts, perceptions, and perceived value regarding these types of interprofessional opportunities. A sequential explanatory mixed methods design was used. An interclass correlation coefficient (ICC) examined the inter-rater reliability of the instrument for both faculty raters (n = 7) and standardized patient (SP) raters (n =5). Qualitative data was gathered from focus groups to assess the utility of the ICAR: Communication and Collaboration. Quantitative and qualitative data were also gathered from a convenience sample of student participants (n =19) to investigate the perceived value of this interprofessional experience. Quantitative data revealed that there was moderate inter-rater reliability for four out of five of the subscales. Three themes emerged from the rater and student focus groups. Students found the interprofessional education (IPE) opportunity to be valuable. They also felt that it enhanced their understanding of the OT/PA profession, as well as their comfort and ability to collaborate and communicate with other professionals. The results of this study suggest that the ICAR: Communication and Collaboration Dimensions has the potential to maintain inter-rater reliability among healthcare students. The results of this study also indicate that healthcare students view IPE events as being highly valuable and beneficial

    Subclass analysis of donor HLA-specific IgG in antibody-incompatible renal transplantation reveals a significant association of IgG4 with rejection and graft failure

    Get PDF
    Donor HLA-specific antibodies (DSAs) can cause rejection and graft loss after renal transplantation, but their levels measured by the current assays are not fully predictive of outcomes. We investigated whether IgG subclasses of DSA were associated with early rejection and graft failure. DSA levels were determined pretreatment, at the day of peak pan-IgG level and at 30 days post-transplantation in eighty HLA antibody-incompatible kidney transplant recipients using a modified microbead assay. Pretreatment IgG4 levels were predictive of acute antibody-mediated rejection (P = 0.003) in the first 30 days post-transplant. Pre-treatment presence of IgG4 DSA (P = 0.008) and day 30 IgG3 DSA (P = 0.03) was associated with poor graft survival. Multivariate regression analysis showed that in addition to pan-IgG levels, total IgG4 levels were an independent risk factor for early rejection when measured pretreatment, and the presence of pretreatment IgG4 DSA was also an independent risk factor for graft failure. Pretreatment IgG4 DSA levels correlated independently with higher risk of early rejection episodes and medium-term death-censored graft survival. Thus, pretreatment IgG4 DSA may be used as a biomarker to predict and risk stratify cases with higher levels of pan-IgG DSA in HLA antibody-incompatible transplantation. Further investigations are needed to confirm our results

    Phase imaging with intermodulation atomic force microscopy

    Full text link
    Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning. Amplitude and phase images at intermodulation frequencies exhibit enhanced topographic and material contrast.Comment: 6 pages, 6 page

    A new data-driven model for post-transplant antibody dynamics in high risk kidney transplantation

    Get PDF
    The dynamics of donor specific human leukocyte antigen (HLA) antibodies during early stage after transplantation are of great clinical interest as they are considered to be associated with short and long term outcomes (graft function and rejection). However, the limited number of such detailed donor-specific antibody (DSA) time series currently available and their diverse patterns have made the task of modelling difficult. Focusing on one typical dynamic pattern with rapid falls and stable settling levels, a novel data-driven model in the form of a third order differential equation has been developed to describe such post-transplant dynamics in DSAs for the first time. A variational Bayesian inference method has been applied to select a model and learn its parameters for 39 time series from two groups of graft recipients, i.e. patients with and without acute antibody-mediated rejection (AMR) episodes. Linear and nonlinear dynamic models of different order were attempted to fit the time series, and the third order linear model provided the best description of the common features in both groups. Both deterministic and stochastic parameters are found to be significantly different in the AMR and no-AMR groups. Eigenvalues have been calculated for each fitting, and phase portraits have been plotted to show the trajectories of the system states for both groups. The results from our previous study with fewer cases have been further confirmed: the time series in the AMR group have significantly higher frequency of oscillations and faster dissipation rates, which may potentially lead to better laboratory measurement strategy and a better chance of understanding the underlying immunological mechanisms

    Modeling the effects of diagenesis on carbonate clumped-isotope values in deep- and shallow-water settings

    Get PDF
    The measurement of multiply isotopically substituted (‘clumped isotope’) carbonate groups provides a way to reconstruct past mineral formation temperatures. However, dissolution-reprecipitation (i.e., recrystallization) reactions, which commonly occur during sedimentary burial, can alter a sample’s clumped-isotope composition such that it partially or wholly reflects deeper burial temperatures. Here we derive a quantitative model of diagenesis to explore how diagenesis alters carbonate clumped-isotope values. We apply the model to a new dataset from deep-sea sediments taken from Ocean Drilling Project site 807 in the equatorial Pacific. This dataset is used to ground truth the model. We demonstrate that the use of the model with accompanying carbonate clumped-isotope and carbonate δ^(18)O values provides new constraints on both the diagenetic history of deep-sea settings as well as past equatorial sea-surface temperatures. Specifically, the combination of the diagenetic model and data support previous work that indicates equatorial sea-surface temperatures were warmer in the Paleogene as compared to today. We then explore whether the model is applicable to shallow-water settings commonly preserved in the rock record. Using a previously published dataset from the Bahamas, we demonstrate that the model captures the main trends of the data as a function of burial depth and thus appears applicable to a range of depositional settings

    Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic

    Get PDF
    The million-year variability of the marine nitrogen cycle is poorly understood. Before 57 million years (Ma) ago, the ^(15)N/^(14)N ratio (δ^(15)N) of foraminifera shell-bound organic matter from three sediment cores was high, indicating expanded water column suboxia and denitrification. Between 57 and 50 Ma ago, δ^(15)N declined by 13 to 16 per mil in the North Pacific and by 3 to 8 per mil in the Atlantic. The decline preceded global cooling and appears to have coincided with the early stages of the Asia-India collision. Warm, salty intermediate-depth water forming along the Tethys Sea margins may have caused the expanded suboxia, ending with the collision. From 50 to 35 Ma ago, δ^(15)N was lower than modern values, suggesting widespread sedimentary denitrification on broad continental shelves. Δ^(15)N rose at 35 Ma ago, as ice sheets grew, sea level fell, and continental shelves narrowed

    Head movement and its relation to hearing

    Get PDF
    Head position at any point in time plays a fundamental role in shaping the auditory information that reaches a listener, information that continuously changes as the head moves and reorients to different listening situations. The connection between hearing science and the kinesthetics of head movement has gained interest due to technological advances that have increased the feasibility of providing behavioral and biological feedback to assistive listening devices that can interpret movement patterns that reflect listening intent. Increasing evidence also shows that the negative impact of hearing deficits on mobility, gait, and balance may be mitigated by prosthetic hearing device intervention. Better understanding of the relationships between head movement, full body kinetics, and hearing health, should lead to improved signal processing strategies across a range of assistive and augmented hearing devices. The purpose of this review is to introduce the wider hearing community to the kinesiology of head movement and to place it in the context of hearing and communication with the goal of expanding the field of ecologically-specific listener behavior

    Resistant starch consumption promotes lipid oxidation

    Get PDF
    BACKGROUND: Although the effects of resistant starch (RS) on postprandial glycemia and insulinemia have been extensively studied, little is known about the impact of RS on fat metabolism. This study examines the relationship between the RS content of a meal and postprandial/post-absorbative fat oxidation. RESULTS: 12 subjects consumed meals containing 0%, 2.7%, 5.4%, and 10.7% RS (as a percentage of total carbohydrate). Blood samples were taken and analyzed for glucose, insulin, triacylglycerol (TAG) and free fatty acid (FFA) concentrations. Respiratory quotient was measured hourly. The 0%, 5.4%, and 10.7% meals contained 50 μCi [1-(14)C]-triolein with breath samples collected hourly following the meal, and gluteal fat biopsies obtained at 0 and 24 h. RS, regardless of dose, had no effect on fasting or postprandial insulin, glucose, FFA or TAG concentration, nor on meal fat storage. However, data from indirect calorimetry and oxidation of [1-(14)C]-triolein to (14)CO(2 )showed that addition of 5.4% RS to the diet significantly increased fat oxidation. In fact, postprandial oxidation of [1-(14)C]-triolein was 23% greater with the 5.4% RS meal than the 0% meal (p = 0.0062). CONCLUSIONS: These data indicate that replacement of 5.4% of total dietary carbohydrate with RS significantly increased post-prandial lipid oxidation and therefore could decrease fat accumulation in the long-term

    MRCK-1 Drives Apical Constriction in C. elegans by Linking Developmental Patterning to Force Generation

    Get PDF
    Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis
    • …
    corecore