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a b s t r a c t 

The dynamics of donor specific human leukocyte antigen antibodies during early stage after kidney trans- 

plantation are of great clinical interest as these antibodies are considered to be associated with short and 

long term clinical outcomes. The limited number of antibody time series and their diverse patterns have 

made the task of modelling difficult. Focusing on one typical post-transplant dynamic pattern with rapid 

falls and stable settling levels, a novel data-driven model has been developed for the first time. A varia- 

tional Bayesian inference method has been applied to select the best model and learn its parameters for 

39 time series from two groups of graft recipients, i.e. patients with and without acute antibody-mediated 

rejection (AMR) episodes. Linear and nonlinear dynamic models of different order were attempted to fit 

the time series, and the third order linear model provided the best description of the common features 

in both groups. Both deterministic and stochastic parameters are found to be significantly different in 

the AMR and no-AMR groups showing that the time series in the AMR group have significantly higher 

frequency of oscillations and faster dissipation rates. This research may potentially lead to better under- 

standing of the immunological mechanisms involved in kidney transplantation. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

Kidney transplantation is proven to be the best treatment for

enal failure and success is dependent on the reaction of the im-

une system primarily against human leukocyte antigen (HLA)

roteins of the transplant. The HLA system is extremely complex;

t is unusual to find two unrelated individuals with the same HLA

ype and only a minority of the transplants in the UK are fully

atched for HLA tissue proteins [1] . Conventional transplantation

s facilitated by immunosuppression which targets cellular compo-

ents of the immune system. 

A significant number of patients develop antibodies to HLA fol-

owing exposure to non-self HLA from pregnancy, blood trans-

usion or previous kidney graft [2,3] . These antibodies exist as

ultiple isoforms but it is Immunoglobulin G (IgG) which is

eemed to be most detrimental to transplant outcome [4] . Such
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E-mail address: n.khovanova@warwick.ac.uk (N. Khovanova). 

a  

r  

H  

ttp://dx.doi.org/10.1016/j.mbs.2016.04.008 

025-5564/© 2016 The Authors. Published by Elsevier Inc. This is an open access article u
gG, termed donor-specific antibody (DSA), when directed at a cur-

ent or prospective donor HLA, can persist for years and are a bar-

ier to transplantation because they can cause immediate, early,

nd late rejection. Safe transplantation of potential recipients with

igh levels of circulating DSAs is an ongoing problem resulting in

rolonged waiting times for transplantation [5] . Ideally, such re-

ipients should receive a transplant from an antibody compatible

onor but because of a donor shortage this is seldom possible. 

Innovative clinical protocols and techniques have been devel-

ped [5–7] to allow transplantation of such highly sensitised pa-

ients by removal of DSAs immediately before the transplant [2,8] .

omplete elimination of preformed HLA DSAs is not possible and,

ecause of immunological memory, post-transplant DSA resynthe-

is can still result in severe acute antibody-mediated rejection

AMR) and an increased risk of graft loss. The mechanisms un-

erlying the control of antibody production are poorly understood

nd treatments given to patients with AMR can be ineffective. In

ecent years, a number of publications [9–11] have confirmed that

LA antibodies are the major cause of acute AMR and chronic graft
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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failure. Even though the risk of acute rejection and chronic graft

failure is positively correlated with high DSA levels, the associa-

tion can vary between patients. In the acute setting, transplanta-

tion across very high DSA levels may result in 50% graft loss, but

data based on the currently used antibody detection assays cannot

reliably predict the outcome [12] . Likewise, in the chronic setting

there is not always a clear relationship between the occurrence of

AMR and the detection of circulating DSAs [13,14] . 

Our group has investigated early DSA dynamics in these high

risk transplants because the nature of their response is likely to

profoundly affect clinical outcomes [2,8,15] . We have observed that

the dynamic behaviour of post-transplant DSAs varies from case to

case, and even different DSAs in the same patient (targeting differ-

ent HLA) show diverse patterns. Development of a strong mathe-

matical approach to describe the dynamics of the preformed DSAs

has not yet been attempted. This is because white box models, i.e.

physiological models, are not yet feasible due to the complexity

of underlying immunological responses to transplants. Data-driven

models, on the other hand, require both an accurate method of

measuring the DSAs in human sera and an appropriate mathemat-

ical framework for the development of the model from limited and

complex sets of data. 

The possible mechanisms underlying changes in the levels of

DSAs are complex and the DSAs levels cannot easily be measured

in the laboratory. DSA levels may change because of rises and falls

in the rate of production. This itself could be related to changes

in the populations of antibody-producing cells (plasma cells and

memory B lymphocytes), and these cells could be formed pre-

transplant and/or recruited from less mature lymphocyte popula-

tions post-transplant [16] . Falls in the levels of DSA post-transplant

are very interesting, as these may occur much faster than the ‘nat-

ural’ rate of antibody clearance from the body (thought to have a

half life of about 20–30 days [17] ). Mechanisms associated with re-

ductions in antibody levels could include absorption of antibodies

onto HLA molecules on the graft [18] – it is known that the levels

of HLA on a graft may increase post-transplant, but this cannot yet

be quantified. Some HLA is shed by the graft, so antibodies could

be absorbed in the circulation. It is known that one physiological

method used by the body to control antibody levels is to produce

antibodies that block other antibodies (idiotypic antibodies), and

production of idiotypic antibodies could explain the falls in DSA

post-transplant [19] . However, as with other potential regulatory

mechanisms, it is currently hard to measure idiotypic antibodies

accurately. Thus, mathematical modelling of changes in DSA levels

may indicate where the effort s involved in developing new labora-

tory assays might be best directed, and once appropriate assays are

available, the modelling may help in the interpretation of results of

the assays at different time points. This could be particularly im-

portant in relation to falls in DSA levels, since this is a key clinical

objective that is currently not achievable in clinical practice. 

It has recently been recognised by the transplant commu-

nity [2,20] that post-transplant screening for anti-HLA antibodies

could be an important tool for monitoring of transplant recipients.

Highly sensitive and specific assays using purified HLA protein

have been developed in recent years. This development in assays

meets the increasing need for monitoring post-transplant DSAs

[21] and opens up opportunities to develop data-driven mathemat-

ical models for the evolution of antibodies after transplantation. 

A unique dataset with detailed antibody measurements span-

ning three to six months, starting around ten days before trans-

plantation has been obtained by our group. A previous analysis

[2] of these data revealed various patterns of antibody dynam-

ics, both with or without acute AMR. Some DSA time series show

a rapid rise during the first two weeks followed by a rapid fall

to almost undetectable levels, which then remain low. This find-

ing is striking: in many of these patients, the DSAs had persisted
or many years before transplantation, and therapies used exper-

mentally have been unable to stop antibody production before

ransplantation. A better understanding of this phenomenon could

herefore have practical benefits. 

The aim of this work is therefore to describe the pathologi-

al early antibody response in mathematical terms and we hy-

othesize that this approach might enable a more intelligent ap-

lication of laboratory testing and suggest therapeutic approaches

o selectively control this antibody response and improve clini-

al transplant outcomes. To take full advantage of the data avail-

ble, we have developed a data-driven model based on differen-

ial equations that reflects the continuous nature of the underly-

ng immunological process [22] . The usefulness of the model for

lassification between patients with and without AMR was also

nvestigated. 

Data from the patients in this series were analysed in relation

o a single outcome measure, namely the occurrence of early acute

MR. This is a key early outcome in antibody incompatible trans-

lantation (AIT), as it is associated with the levels of immunosup-

ression required in the early post-transplant period, and is also

ssociated with short and long term graft survival. 

The structure of the paper is as follows. Section 2 gives de-

ails on the data and presents visual analysis of the variety of

ynamic antibody responses to transplantation. Section 3 explains

he methodology for model formulation and parameter estimation.

ection 4 presents the final model and detailed analysis of systems

arameters. Section 5 summarises the results, justifies the need for

urther work and outlines the relevance of the model for kidney

ransplant management. 

. Data description and visual analysis of dynamic patterns 

Data from twenty-three patients who underwent renal AIT

t University Hospitals Coventry and Warwickshire (UK) between

003 and 2012 were analysed in this study. The data were com-

rised of time series of DSA evolution over a period of about ten

ays before and six months after transplantation. Serum samples

or DSA analysis were taken almost daily in the first three to four

eeks, as most dynamic behaviour occurs during that period, and

ampling became more sparse later when the antibodies tended

o be more stable. Antibody levels were measured using the mi-

robead assay manufactured by One Lambda Inc (Canoga Park, CA,

SA), analysed on the Luminex platform (XMap 200, Austin, TX,

SA). The assay measures the Mean Fluorescence Intensity (MFI)

hich corresponds to antibody level although their relationship is

inear only over a limited range. As described in [2] , when the MFI

alue is higher than 10,0 0 0 AU (Arbitrary Units) and below about

0 0 0 AU, the linear correlation breaks. 

Some of the patients had multiple DSAs targeting different HLA,

o the total number of post-transplant time series available for

his analysis was thirty-nine. Twenty-seven DSA time series belong

o fourteen patients that experienced episodes of acute AMR in

he first thirty days after transplantation (AMR group), and twelve

SA time series belong to the other nine patients who did not have

n episode of AMR (no-AMR group). Rejection episodes were di-

gnosed by renal biopsy or clinically if there was rapid onset of

liguria with a rise in both serum creatinine and DSA levels [2] . In

atients receiving HLA antibody-incompatible grafts, the incidence

f AMR was 30–40% [15] . Although AMR can be severe and can

ventually result in graft failure, it usually develops slowly over a

eriod of several days. This gives an opportunity to detect AMR at

n early stage and treat it, resulting in better outcomes [8] . The

roup characteristics and details of therapy have previously been

escribed [2] . A smaller dataset including twenty-one time series

rom the first twelve patients in the cohort was considered in our

reliminary study [23] . 
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Fig. 1. Measured time series illustrating individual DSA changes in the no-AMR group. Markers correspond to each measurement point. MFI = mean fluorescent intensity. 

Fig. 2. Measured time series illustrating individual DSA changes in the AMR group. Markers correspond to each measurement point. MFI = mean fluorescence intensity. 
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Visual examination of the time series reveals diverse dynamic

ehaviour of DSAs. Figs. 1 and 2 show some examples of the pat-

erns from the no-AMR group and the AMR group, respectively. As

ome patients had multiple DSAs, the case number in these fig-

res and in the corresponding text is followed by the DSA type.

or example, in Fig. 2 , patient 36 had two DSAs, HLA-A24 and HLA-

R17, comprising two different time series: case 36 HLA-A24 (case

6 A24 for short) and case36 HLA-DR17 (case 36 DR17 for short).

retransplant antibody removal can be seen to reduce total DSA

evels due to cycles of double filtration plasmapheresis. Typically,

etween two and five alternate day sessions were performed. 

The initial drop is typically followed by a rapid rise in DSA

hich usually occurs with a lag of a few days after transplanta-

ion and is caused by two factors: plasmapheresis stopping and an

ncreased rate of DSA synthesis due to an immunological memory

esponse. After the peak levels a diversity of dynamic patterns is

oticeable: antibody levels do not follow a common route, vary-

ng from case to case, and even differing for different DSAs in the

ame patient. In some cases there is a rapid fall in DSA to a steady

tate, corresponding to a low (almost zero) level of DSA, and this

s typically reached within the first month after operation. Such

atterns are observed in both no-AMR and AMR groups: case 34
both B62 and B60) and case 28 in Fig. 1 , and case 36 DR 17 in

ig. 2 . In other cases the dynamics of the fall after the peak are fol-

owed by another rise, and antibodies do not settle at a low level

ithin the first three months after operation: case 59 in Fig. 1 ,

ase 36 A24 and cases 61 and 69 in Fig. 2 . They either demon-

trate a slow dynamic around a certain constant level (case 61 in

ig. 2 ) or change dramatically over the first three months (case 59

n Fig. 1 and case 69 in Fig. 2 ). There is no obvious relationship be-

ween these dynamical patterns, steady state levels and the occur-

ence of AMR episodes. In some cases, as shown above, low steady

tate levels are observed in the no-AMR group and higher levels

r dramatic changes are noticeable in the AMR group. There are

lso cases with the absence of AMR despite high levels of DSA, or

resence of AMR despite low DSA levels. Finally, some patients

e.g. case 36 in Fig. 2 ) rejected the kidney, but had multiple DSAs

ith one type that rose after the initial fall post-transplant (A24)

nd another type that kept falling to a low steady level (DR17).

his visual analysis demonstrates that there is no certain associa-

ion between higher levels of post-transplant DSA and the occur-

ence of the rejection episodes. 

The aim of this study is to analyse these dynamical patterns in

rder to propose a set of characteristics capable of discriminating
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between the patients with and without the incidence of AMR. In

this study, we are particularly interested in the DSA dynamics af-

ter the first peak value down to an almost zero level, i.e. focus is

on the typical pattern of a rapid fall that occurs in most of the pa-

tients with and without AMR episodes. Falls in the serum levels of

HLA DSAs after kidney transplantation are of great clinical interest,

as they are associated with resolution of rejection and good long

term outcomes in patients at high risk of graft loss [15] . 

3. Models and methods 

3.1. Data fitting and model selection 

As seen from the preliminary observations of the dynamic

patterns, the HLA antibody response to the transplanted kidney

is a complex immunological process, nonlinear and stochastic in

general. Time series available for analysis are complex and one-

dimensional: only one variable as a function of time (MFI levels)

is available representing a response of the entire biological system

to external stimuli. These characteristics pose a set of challenging

questions with respect to the order of the system and the number

of parameters to be used in the model. It is also unclear whether

the system equation should be linear or nonlinear, stochastic or

deterministic, and what would be the most appropriate modelling

approach to identify system parameters in the situation where no

preliminary knowledge of the model is available. Although we only

consider the falling part of MFI level dynamics, all the above ques-

tions remain. 

3.1.1. Exponential fitting 

It can be noticed that the falling MFI dynamics of HLA DSA after

the peak value is a relaxation process, the simplest theoretical de-

scription of which is an exponential law. Initially the curve fitting

tool (Cftool) in Matlab [24] was used to fit each of the thirty-nine

DSAs. Some of the time series were correctly described by this ap-

proach; however, the use of superposition of exponential functions

could not correctly describe all the cases with and without AMR in

our cohort. As the next step, instead of exponential functions, i.e.

solutions of dynamic equations, dynamic mathematical models in

the form of differential equations were considered. 

3.1.2. Form of the model: linear/nonlinear and stochastic terms 

A general form of an n th order nonlinear differential equation

with coefficients in the form of a polynomial function have been

considered. Initially two stochastic terms were included to repre-

sent noise in the system equations. Measurement noise is added

due to uncertainty in measured data, and the dynamic noise ac-

counts for any other hidden properties not captured by the model.

Thus, DSA falls after the initial rise (to a peak level) in the early

post-transplant period can be described by the following model: 

d 

n 

d t n 
x t + 

n −1 ∑ 

i =0 

f i +1 (x t ) 
d 

i 

d t i 
x t + f 0 (x t ) = ηt (1)

y t = x t + ε t (2)

Eq. (1) is an evolution equation of n th order, where x t is a function

of t that describes the MFI dynamics, and y t is the measured MFI

time series. ηt is system noise, and ε t is measurement noise. Each

noise was modelled as Gaussian-distributed white noise with zero

mean and intensity (variance) of I η and I ε , respectively. f i +1 (x t )

(i = 0 , 1 , . . . , n − 1) are polynomial functions of x t . The derivative

of order zero of x t is defined to be x t itself. f 0 ( x t ) is defined as

−θ0 for convenience. The order of the system equation n is to be

decided together with unknown parameters of functions f i+1 ( x t ). n

initial conditions are required to obtain a closed form solution. 
Model M n constituting Eqs. (1) and (2) covers a variety of dy-

amic patterns depending on the order of the system n . A more

omplex model may be able to explain a wider range of system

ehaviour in the data at the risk of overfitting. 

.2. Model and parameter identification 

In the current work, for DSA time series, nonlinear and lin-

ar stochastic dynamic hierarchical models were developed us-

ng a variational Bayesian inference approach [25] for both model

nd parameter identification. Both the form and parameters of the

odels were identified using the SPM9 toolbox [26] (freely avail-

ble online) for MATLAB [24] . This variational Bayesian toolbox

26] allows accounting for both types of stochastic terms: measure-

ent noise and system noise. 

Starting from the first order model M 1 ( n = 1 in Eq. (1) ), the

rder n was increased until the model M n fitted the data suffi-

iently well – satisfy the criteria given in Section 3.3 . The varia-

ional Bayesian learning algorithm [25] was modified to our spe-

ific data to calculate probabilities p ( y t | M ) (where M is M 1 , M 2 ,

, M n ) of observing the time series y t given different models M ,

o that the model with the highest value of p ( y t | M ) could be se-

ected for that specific DSA time series. Attention has to be paid

o the features in the dataset that can be explained by a model

ith a higher order but cannot be explained by the model with

 lower order, and to decide if the features are general enough to

ake the final decision on the order for all DSA time series under

nvestigation. 

For each model candidate, the value of the probability p ( y t | M ),

hich is also referred to as the model evidence [27] , was ap-

roached by iteratively optimising the states of the system and

odel parameters until a local maximum value of p ( y t | M ) was

eached. This procedure is embedded into the variation Bayesian

ptimisation algorithm [27] . Briefly, to infer multiple elements of

he hierarchical model, i.e. system states, parameters (related to

he deterministic terms in the equation), and hyperparameters (re-

ated to the stochastic terms) each element is optimised one by

ne while the rest of the elements are kept fixed. There are two

teps in this optimisation procedure. Firstly, assuming the elements

parameters and the states) are conditionally independent of each

ther, the combined distribution can be factorised into indepen-

ent partitions of each element distribution, which is known as

he mean-field approximation, i.e. the combined distribution of all

he elements was approximated by the product of individual ele-

ent distributions [27] . Secondly, the distribution of each individ-

al parameter/state was approximated by the first two moments

mean and variance) known as Laplace approximation [27] . The

ean-field approximation and the Laplace approximation allow for

n iterative update of the parameters and the states by applying

ariational calculus. The logarithm of p ( y t | M ) is known as ‘free en-

rgy’ F(θ, y t ) , a term borrowed from statistical physics [25] . The

ree energy was maximised, and, among other criteria (normalised

oot mean square error and the stability of the immune response,

oth of which are discussed in the next section), defined the good-

ess of fit. 

This Bayesian approach not only provides the most probable

alues of the parameters but also accounts for the uncertainties

n the parameters. The prior information regarding the parameters

s also taken into account. Such information on possible parame-

er values was not available to us, and therefore the mean values

f the parameter priors were set to zero. To allow the algorithm

o search in a relatively wide region for the optimal parameters,

ll variances were set to be 10 4 , i.e. priors with wide distributions

ere considered. Both noise precisions, which are inversely propor-

ional to noise intensities, were modelled by a gamma distribution

ith two hyperparameters (shape ηa , ε a and rate η , ε ). Weakly
b b 
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nformative Jeffreys priors, as described in [28] , were chosen for

he precisions of the noise, with both shape and rate parameters

et to 1. The initial conditions were all modelled as Gaussian dis-

ributions. The prior means of the initial conditions were defined

rom the measurement time series, and the prior variances were

et to 10 4 . 

.3. Model selection criteria 

The following four criteria were applied to identify the best fit-

ing model. 

1. The free energy F has been maximised by tuning system pa-

rameters in an iterative manner for each model. Note that

decision making based on the comparison of free energy of

any two models with different orders could be problematic

due to the heavy penalisation of the model complexity em-

bedded in the variational Bayesian method as explained in

[27] . Increasing the order of the system by one would not

only increase the degree of freedom in the parameter space,

but also increase the dimension of the system states. This

leads to a dramatic decrease in the free energy, which could

be an order (or several orders) greater than the free energy

difference between models of the same order. Therefore, the

free energy criteria was only used to compare the models of

the same order. For models with different orders, criterion

2, as below, was utilised. 

2. Normalised Root Mean Squared Error (NRMSE) was used to

compare the models with different orders for each individ-

ual time series. Inferred parameters θ i were applied back to

the system equation to generate time series without stochas-

tic terms, i.e. deterministic solution. Note that because pa-

rameters were identified in the form of normal distribu-

tions, the most probable (mean) value of parameters were

plugged into the system equation. Root Mean Squared Er-

ror ( RMSE ) between the measurement MFI time series y t and

the inferred deterministic time series ˆ y t can be calculated as

follows: 

RMSE = 

√ ∑ n 
t=1 ( ̂  y t − y t ) 2 

n 

(3) 

NRMSE accounts for the different heights of the peaks for

each DSA time series and is found by dividing the RMSE

by the maximal MFI value for a given DSA time series. The

model with the lowest value of NRMSE describes the data

most accurately. For the model to be deemed satisfactory,

NRMSE should not exceed the value of 0.15 (or 15 %) as it is

known that the inter-assay coefficient of variability for DSA

measurements is around 10–30% [29] . 

3. Generic form . As the entire aim was to find a model capable

of capturing the common patterns in all time series, a model

that could only describe some of the DSA time series was

disregarded. 

4. System stability . The model has to have a unique stable

steady state, which implies that the system’s response de-

cays with time. This has been checked via calculations of

the real parts of corresponding eigenvalues which have to

be negative for stability. Note, even though the steady state

of the immune homoeostasis was disturbed by transplanta-

tion, the antibody levels settled rapidly to a new steady state

except for the extreme cases (example case 69 HLA-DR53 in

Fig. 2 ), but consideration of such cases is out of the scope of
this work. t  
.4. Statistical analysis 

Statistical analysis of model parameters was performed using

he Wilcoxon rank sum test. The null hypothesis of no difference

etween the groups of interest was tested at the 5% significance

evel, and the results are presented as p -values. Statistical analysis

f the differences in NRMSE between two models was performed

sing the one sample t -test, which assesses the normality of data

ith zero mean and unknown variance at the 5% significance level.

he result is presented as p -values. 

. Results and discussions 

.1. Model selection 

.1.1. Comparison of linear models of different orders 

Linear models with different system orders are considered first.

q. (1) in Section 3.1.2 transforms into a linear differential equa-

ion when f i +1 (x t ) are constants, with constant parameters θ i 

(i = 0 , 1 , . . . , n − 1) , where f n (x t ) = θn , . . . , f 2 (x t ) = θ2 , f 1 (x t ) = θ1 .

 0 ( x t ) is defined as −θ0 for convenience. 

A first order linear model was considered first, and it did not

how good performance. Then linear models with higher system

rders were investigated. In this section, we present the results

f system and parameter identification by comparing solutions for

inear first, second and third order dynamic equations only: 

odel 1 (M 1 ) : 
d x t 

d t 
+ θ1 x t − θ0 = 0 (4) 

odel 2 (M 2 ) : 
d 

2 x t 

d t 2 
+ θ2 

d x t 

d t 
+ θ1 x t − θ0 = 0 (5)

odel 3 (M 3 ) : 
d 

3 x t 

d t 3 
+ θ3 

d 

2 x t 

d t 2 
+ θ2 

d x t 

d t 
+ θ1 x t − θ0 = 0 (6)

ote if the third order equation had not been successful, the pro-

edure would have continued to account for nonlinearities (pre-

ented in Section 4.1.2 ) first and then increase the order of the

ystem until a suitable solution is found. 

Initially not only the measurement noise ε t (as in Eq. (2) ) but

lso the system noise ηt (as in Eq. (1) ) was included in the mod-

ls. It was found that for all DSA time series, models without sys-

em noise have larger free energy compared with the counterpart

athematical representations containing both types of stochastic-

ty. The benefit – improved fitting – obtained by using the more

omplex model with system noise does not exceed the penalty

ntroduced by adding two degrees of freedom in the parameter

pace. Therefore, we excluded the system noise from the models

nd this is reflected on the zero right hand side of the Eqs. (4) –(6) .

Typical fittings for four DSA time series, one from the no-AMR

roup and the other three from the AMR group, by the three sug-

ested models (4) –(6) are shown in Fig. 3 . The results for models

 1 – M 3 in Fig. 3 (a) and (c) show a winning model candidate M 3 .

ven though (a) is from a patient in the no-AMR group and (c) is

rom a patient in the AMR group, both time series show oscilla-

ions after day 30. M 1 failed to describe the dynamics of both time

eries as indicated by large NRMSE values in Table 1 : NRMSE =
 . 272 and NRMSE = 0 . 090 . M 2 successfully described the initial

alls for both time series, but failed to capture the oscillations in

SA after day 30, which is also confirmed by the large NRMSE

alue of 0.053 and 0.096 ( Table 1 ). M 3 captured successfully both

he falling part and the later trend with smaller NRMSE values of

.014 and 0.053. Fig. 3 (b) exhibits different dynamics with a cluster

f data around day 20. This is a common feature observed in the

ajority of time series in both AMR and no-AMR groups, and re-

uires special attention. The temporary stall of falling could not be

xpressed by using M 1 or M 2 ; however, M 3 successfully depicted

he sudden changes in falling as shown in the magnified box 1
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Fig. 3. Typical fitting results compared among the three models M 1 – M 3 for (a) HLA-B60 (case 52) for a patient from the no-AMR group; (b) HLA-DRB3 ∗01 for a patient 

(case 14) from the AMR group; (c) HLA-A32 for a patient (case 16) from the AMR group; (d) HLA-A2 for a patient (case 17) from the AMR group. The measured values are 

indicated by circles. 

Table 1 

Summary of the NRMSE values for 3 

models corresponding to the four ex- 

ample datasets in Fig. 3 . 

NRMSE 

M 1 M 2 M 3 

( a ) 0.272 0.053 0.014 

( b ) 0.083 0.085 0.013 

( c ) 0.090 0.096 0.053 

( d ) 0.088 0.071 0.073 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Boxplot of the difference between the NRMSE of M 2 and NRMSE of M 3 . 
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in Fig. 3 (b). Further, the fittings by M 1 and M 2 were almost in-

distinguishable after day 70, and both models underestimated the

settling level of DSAs. The fitting by M 3 otherwise correctly esti-

mated the settling level and gave a better description of another

clustered region around day 30 (see magnified box 2 in Fig. 3 (b)).

Thus, M 1 and M 2 were ruled out based on their incapability of de-

scribing the important features, and the higher order model M 3 

was chosen. 

The same approach was applied to all the other DSA time se-

ries. In 32 out of 39 cases, the NRMSE value of M 3 was the small-

est among the three models. In the other 7 cases, the NRMSE value

of M 2 was comparable with the NRMSE value of M 3 . An example

is shown in Fig. 3 (d) where the fittings by M 2 and M 3 were indis-

tinguishable from each other, with NRMSE values given in Table 1 .

To compare the NRMSE values between M 2 and M 3 across all 39

cases, the NRMSE value of M 3 was subtracted from the NRMSE

of M 2 , and the differences for all time series are shown in the

boxplot Fig. 4 . The differences in NRMSE between the two mod-

els were tested by the one-sample t -test at the significance level

of 0.001, and the mean value was found to be significantly larger

than zero. Therefore, M 3 was selected as the best model across the

cohort with the dynamic equation in the form (6) . Note that the

NRMS E M 2 
− NRMS E M 3 

values for the seven cases with very close

NRMSE values, mentioned above, are located around the zero value

in Fig. 4 . 
.1.2. Nonlinear versus linear 

Nonlinearity was introduced into the second order model in

he form of polynomial nonlinear coefficients f 1 ( x t ) or f 2 ( x t ) in

q. (1) using the approach of [23,30,31] . It was acknowledged that

 linear description is preferable over nonlinear if this does not

ncrease the number of unknown parameters dramatically. Conse-

uently, the maximal number of unknown parameters in the sec-

nd order nonlinear model was kept comparable with the num-

er of parameters of the third order linear equation, i.e. no more

han 4. Under this condition, two nonlinear models were consid-

red: model NM 1 with nonlinearity in the damping term ( f 1 (x t ) =
 1 x t + θ1 , f 2 (x t ) = θ2 ) and model NM 2 with nonlinearity in the

 t term ( f 1 (x t ) = θ1 , f 2 (x t ) = k 2 x t + θ2 ). The corresponding system

quations are as follows: 

M 1 : 
d 

2 x t 

d t 2 
+ θ2 

d x t 

d t 
+ (k 1 x t + θ1 ) x t − θ0 = 0 (7)

M 2 : 
d 

2 x t 

d t 2 
+ (k 2 x t + θ2 ) 

d x t 

d t 
+ θ1 x t − θ0 = 0 (8)

An example of the fittings of the time series from Fig. 3 (c) by

onlinear models NM 1 and NM 2 is shown in Fig. 5 . From Fig. 5 ,

either NM 1 nor NM 2 captured the dynamic features of the time

eries. The NRMSE criterion was applied here for models of differ-

nt order: both NRMSE values (0.080 for NM 1 and 0.067 for NM 2 )

re larger than 0.053 for M . Additionally it is clear that the fitting
3 
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Fig. 5. Fitting results compared between the two nonlinear models NM 1 and NM 2 

and the linear model M 3 for the time series shown in Fig. 3 (c). The measured values 

are indicated by circles. 
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y NM 2 leads to an unstable solution. Therefore, linear model M 3 

 Eq. 6 ) outperformed both NM 1 and NM 2 , and was chosen as the

nal model. This example is a typical (representative) fitting for all

he other time series in the cohort. 

.2. Analysis of the inferred parameters 

The inferred parameters ( θ0 , θ1 , θ2 and θ3 ) of the selected

odel M 3 have been compared between the two groups (AMR

nd no-AMR) for meaningful differences. The results are presented

n Fig. 6 (a)–(d) in the form of boxplots. For all four parameters,

he ranges of the parameter values are much wider in the AMR

roup compared with the no-AMR group, indicating more diverse

ynamic behaviour of DSAs in the AMR group. The Wilcoxon rank

um test showed statistically significant differences in the median

alues between the AMR and the no-AMR group for all four pa-

ameters, which confirmed the results of our preliminary study

23] with fewer cases. 

Even though the values of the parameters do not have direct

linical interpretations, which is one of the main drawbacks of

ata-driven modelling in biomedical research, a certain combina-

ion of the parameters indicates important features of the system

nder investigation. The ratio θ0 / θ1 from Eq. (6) defines the set-

ling level of DSA, which is of clinical interest. Kidney transplan-

ation constitutes a major disturbance in the immune system, and

he system should settle down to a new homoeostatic equilibrium

fter the transient response to the transplanted organ. A success-

ul transplantation is usually characterised by a new stable steady

tate with low DSA levels (ideally zero, or below the limit of detec-
a b

c d

Fig. 6. Boxplot for the inferred 
ion of the assay). From the comparison between the AMR and no-

MR groups, the majority of the settling MFI values in both groups

re less than 10 0 0 AU, indicating low DSA settling levels. The high-

st settling level in the no-AMR group is 3862 AU, compared with

he level of 5783 AU in the AMR group. The lowest settling level

n the no-AMR group is 22 AU, compared with the level of 27 AU

n the AMR group. There is no significant difference in the median

alue of θ0 / θ1 between the groups with a p -value of 0.5 (300 AU

n the no-AMR group, 425 AU in the AMR group), which means

hat a DSA time series from the AMR group does not necessarily

ave a higher settling level. However, significant difference in θ0 

nd θ1 separately between the groups shown in Fig. 6 implies that

he dynamic behaviour of DSAs in the AMR group might be con-

rolled by more complex and diverse underlying mechanisms. 

Such detailed analysis of the parameters of the models devel-

ped allows for enhanced understanding of the clinical character-

stics which are most important for successful outcome in this high

isk form of transplantation. Our findings may facilitate the forma-

ion of an accurate pre-transplant risk profile which predicts AMR

nd allows the clinician to intervene at a much earlier stage. Given

hat AMR in the early post-transplant period has been shown to

ead to worse long-term graft outcome any strategy to prevent

arly AMR will be of great benefit to the patients [15] . 

Noise accounts for both measurement error due to inaccuracy

n the MFI readings, and the perpetual actions of many unac-

ounted for factors that influence the evolution of the system. The

oise intensities I ε were compared between the no-AMR and AMR

roups. Our preliminary study [23] showed a smaller and more

ompact range of the noise intensities from the no-AMR group

ith 9 time series compared with the AMR group with 12 time

eries (shown in Fig. 5 of [23] ). Limited by the numbers of cases

vailable then, the Wilcoxon rank sum test showed no significant

ifference in the median value between groups with a p -value of

.08. This study, on a larger cohort with almost twice as many time

eries, confirmed the previous observation with a smaller p -value

f 0.01, indicating a significant difference in the median values of

he noise intensity between groups. 

The square root of the noise intensity 
√ 

I ε , which is an absolute

rror value, shares the same unit as the MFI level. In the no-AMR

roup with an average MFI peak height of 5716 AU, the median

nd range (in brackets) for 
√ 

I ε were 159 (5–353) AU. In the AMR

roup with an average MFI peak height of 8502 AU, the median

nd range (in brackets) for 
√ 

I ε were 253 (34–1425) AU. A smaller

oise intensity and more compact range of values across the
parameters θ0 , θ1 , θ2 , θ3 . 
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Fig. 7. Phase portraits of the three dimensional system for two DSA time series, (a) 

from a patient in the AMR group and (b) from a patient in the no-AMR group. The 

time difference between two consecutive markers is one day. 
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no-AMR group is noticeable. Even though the assay used to mea-

sure the DSA level in both groups was the same, the relationship

between MFI measurement and the antibody level deviates from

linearity as the antibody level approaches 10,0 0 0 AU. The higher

antibody peak values in the AMR group can therefore introduce

an additional source of measurement error compared with the no-

MR group, explaining the wider range and greater magnitude of

noise intensity seen in the AMR group. Another explanation could

be a different level of model imperfection between the two groups.

The higher level of noise in the AMR group could be caused by

more and/or stronger factors unaccounted for by M 3 . Also it is

worth noticing that the priors for the noise intensity applied in

the inference method are chosen to be weakly informative. A more

informative prior may limit the flexibility of the model, but a care-

fully chosen informative prior could improve the estimation of de-

terministic parameters and parameters related to noise description.

The choice of the priors is not straightforward, and an appropriate

methodology is under development. 

In single antigen bead measurements, another measure, termed

inter-assay coefficient of variability (CV) is often used to indicate the

measurement uncertainty. It is defined as the ratio of the standard

deviation and the mean value of several measurements using sep-

arate assays. In [32] , the inter-assay CV was larger than 20% when

the measurements from seven different labs were compared. In our

model, considering the median value of 
√ 

I ε and the median value

of MFI measurements, the median CV is 13% and 14% for the no-

MR and AMR group respectively, which is less than 20% given in

[32] . 

4.3. Eigenvalues 

The evolution equation Eq. (6) can be transformed into the third

order linear state space model of the form ( 

˙ x t 
ẍ t ... 
x t 

) 

= 

( 

0 1 0 

0 0 1 

−θ1 −θ2 −θ3 

) ( 

x t 
˙ x t 

ẍ t 

) 

+ 

( 

0 

0 

θ0 

) 

(9)

The solution of Eq. (9) is defined by the eigenvalues λ1 , λ2 , λ3 of

the 3 × 3 matrix, the corresponding eigenvectors and three initial

conditions. The sum of the eigenvalues defines the divergence of

the vector field (phase volume V ( t )) in the state space [33] : 

 (t) = V 0 e 
(λ1 + λ2 + λ3 ) t = V 0 e 

Rt , (10)

where R can be interpreted as the dissipation rate of DSAs. For all

the time series in the cohort, the dissipation rate is less than zero,

which means that the phase volume shrinks. 

The eigenvalues for every DSA time series were calculated us-

ing the inferred parameters θ1 , θ2 and θ3 . Each DSA time series

in the cohort is characterised by three eigenvalues, one of which is

real, λ1 , and two of which are complex conjugate, λ2 , 3 = λr ± iλi .

All eigenvalues λ1 and the real parts of λ2 and λ3 were nega-

tive, confirming that the system generates stable solutions for each

DSA type, which satisfies criterion 4 in Section 3.3 . The system dy-

namics for each DSA demonstrate a decay with some oscillations,

the frequency of which is determined by λi . The dissipation rate

is determined by the real parts of the eigenvalues: R = λ1 + 2 λr .

The characteristic dissipation rate R takes into account the over-

all decay along the path from the peak value down to the steady

state. The steady state of the system is a fixed point, which serves

as an attractor. To visualise the dynamics of DSAs, phase portraits

have been plotted for an AMR case ( Fig. 7 (a)), and a no-AMR case

( Fig. 7 (b)). The trajectories start from the inferred initial states and

evolute to the fixed points in a spiral manner in the phase space. It

can be seen that the dissipation rate in the AMR group ( Fig. 7 (a), R

(a ) = −0 . 81 days −1 ) is faster than in the no-AMR group ( Fig. 7 (b),

R (b) = −0 . 27 days −1 ). 
The dissipation rates and frequencies of oscillations were com-

ared between the AMR and no-AMR groups for 39 time series. In

he no-AMR group, the median and range (in brackets) for R were

0.42 ( −0.66 − : 0.25) days −1 . In the AMR group, the median and

ange (in brackets) for R were −0.79 ( −3.88 − : 0.15) days −1 . The

omparison of the dissipation rates R between the groups for all

he time series confirmed a significantly faster dissipation rate of

SAs in the AMR group than in the no-AMR group with a p -value

f 0.04. 

The imaginary parts of the eigenvalues between AMR and no-

MR groups also showed significant differences with a p -value of

.03. In the no-AMR group, the median and range (in brackets) for

i were 0.20 (0.01 : 0.34) days −1 . In the AMR group, the median

nd range (in brackets) for λi were 0.28 (0.05 : 0.80) days −1 . The

arger values of the imaginary parts in the AMR group represent

 higher frequency of oscillation, which indicates a stronger reg-

lation during the transient antibody response for the patients in

he AMR group. One hypothesis of this regulation is the possible

roduction of a secondary antibody (such as anti-idiotype) which

argets the dramatically increased DSA, resulting in a battling force

etween the DSA production and secondary antibody production

19] . 

Note that the previous study by Higgins et al. [2] investigated

he change in absolute MFI values and in the mean percentage falls

n the AMR and no-AMR groups, and suggested that the falls were

reater in the AMR group compared with the no-AMR group. Our

esults show that not only is the difference in the MFI level be-

ween peak and steady state different between the two groups, but

he rate of change of the fall is faster in the AMR group, also im-

lying a stronger regulation mechanism in this group. 

. Conclusions 

With a unique dataset of DSA time series available, a mathe-

atical model in the form of differential equations has been de-

eloped for the first time to describe the dynamic of the ‘falls’

n DSAs for patients with and without AMR episodes. The third

rder linear model was selected as it successfully captured the

ommon features of the falling dynamics in DSAs during the early

ost-transplant stage in the AMR and no-AMR groups. The model

s proved useful in classification between two clinically different

roups. Even though the settling level of DSAs, which can be ob-
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erved from the clinical data, showed no difference between the

MR and the no-AMR groups, all the parameters of the model

both deterministic and stochastic) were found to be significantly

ifferent between the two groups. This approach is found to be

seful in capturing properties of antibody evolution from their

eak concentration to final settling level and showed that the

ynamic responses are different in AMR and no-AMR groups. A

igher frequency of oscillations and a faster antibody dissipation

ate for the AMR group had been observed from the phase portrait

epicting the trajectories of the system states, and a further test

onfirmed significant differences between the groups. 

The findings have important implications for the development

f laboratory assays that might define the nature of the mecha-

isms responsible for the falls in DSA levels post-transplant, since

 fuller understanding of these mechanisms might allow for pre-

ransplant manipulation of DSA levels and improved clinical out-

omes. This is particularly important with respect to the oscillating

ature of DSA levels, which may reflect a system slowly reaching

omeostasis, and may be reflected in laboratory measurements. 

Further work might also include modelling in relation to more

etailed characteristics of the antibodies. For example, we have al-

eady shown that the subclasses of IgG are associated with clinical

utcomes, so that measuring the levels of these subclasses at more

ime points might be valuable [34] . The clinical outcome measures

ight also be extended. Since acute AMR is often treatable and

s not always associated with a poor clinical outcome (especially

hen the settling level of DSA is very low), longer term graft sur-

ival could also be considered as an important outcome level. The

ay to day renal function does not always follow DSA levels [8] and

ur understanding of how a graft responds to DSA levels and how

MR evolves is limited. 

This study comprises a pilot research on data-driven model de-

elopment for early post-transplant antibody dynamics, focusing

n one of the typical patterns of a rapid fall following a rapid

ise in DSA after kidney transplantation. Future work will involve

lassifying and modelling the other patterns of the post-transplant

SA dynamics that have been described in section 2; a universal

odel that is capable of describing different dynamics in DSAs is

nder development. 

Details on the data used for analysis are available

rom the University of Warwick institutional repository at

ttp://wrap.warwick.ac.uk/78888/. 
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