
Accepted Manuscript

Modeling the effects of diagenesis on carbonate clumped-isotope values in deep-
and shallow-water settings

Daniel A. Stolper, John M. Eiler, John A. Higgins

PII: S0016-7037(18)30067-X
DOI: https://doi.org/10.1016/j.gca.2018.01.037
Reference: GCA 10640

To appear in: Geochimica et Cosmochimica Acta

Received Date: 21 June 2017
Revised Date: 20 December 2017
Accepted Date: 30 January 2018

Please cite this article as: Stolper, D.A., Eiler, J.M., Higgins, J.A., Modeling the effects of diagenesis on carbonate
clumped-isotope values in deep- and shallow-water settings, Geochimica et Cosmochimica Acta (2018), doi: https://
doi.org/10.1016/j.gca.2018.01.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.gca.2018.01.037
https://doi.org/10.1016/j.gca.2018.01.037
https://doi.org/10.1016/j.gca.2018.01.037


  

 1 

Modeling the effects of diagenesis on carbonate clumped-
isotope values in deep- and shallow-water settings 

 
Daniel A. Stolper

1,*
, John M. Eiler

2
, John A. Higgins

3
 

 
1
Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA 

2
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 

3
Department of Geosciences, Princeton University, Princeton, NJ 08544, USA 

 
 

Abstract 

The measurement of multiply isotopically substituted (‘clumped isotope') carbonate groups 
provides a way to reconstruct past mineral formation temperatures. However, dissolution-
reprecipitation (i.e., recrystallization) reactions, which commonly occur during sedimentary 
burial, can alter a sample’s clumped-isotope composition such that it partially or wholly reflects 
deeper burial temperatures. Here we derive a quantitative model of diagenesis to explore how 
diagenesis alters carbonate clumped-isotope values. We apply the model to a new dataset from 
deep-sea sediments taken from Ocean Drilling Project site 807 in the equatorial Pacific. This 
dataset is used to ground truth the model. We demonstrate that the use of the model with 

accompanying carbonate clumped-isotope and carbonate 
18

O values provides new constraints on 
both the diagenetic history of deep-sea settings as well as past equatorial sea-surface 
temperatures. Specifically, the combination of the diagenetic model and data support previous 
work that indicates equatorial sea-surface temperatures were warmer in the Paleogene as 
compared to today. We then explore whether the model is applicable to shallow-water settings 
commonly preserved in the rock record. Using a previously published dataset from the Bahamas, 
we demonstrate that the model captures the main trends of the data as a function of burial depth 
and thus appears applicable to a range of depositional settings. 

                                                
*
Corresponding author: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, 
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1. Introduction 
 
The oxygen isotopic composition of carbonate minerals has been used extensively to reconstruct 
temperatures of ancient oceans (e.g., Emiliani, 1955; Shackleton and Kennett, 1975; Miller et al., 
1987; Zachos et al., 2001). Oxygen isotopes can be used to reconstruct carbonate mineral 
formation temperatures due to the temperature-dependent partitioning of 

18
O vs. 

16
O in carbonate 

relative to water for systems at thermodynamic equilibrium (e.g., Urey, 1947; McCrea, 1950). 
18

O/
16

O compositions of carbonates are generally quantified using 
18

O
 
values (

18
O

carb
; footnote 

1
). 

 
This approach to determining past carbonate formation temperatures requires isotopic 
equilibrium to exist between two phases, water and a carbonate mineral such as calcite. Thus, 
one must know the oxygen isotopic composition of both phases to determine a mineral’s 
formation temperature. Although ancient carbonate minerals are preserved in the rock record 
over most of Earth’s history (Veizer and Mackenzie, 2003), equivalent archives of seawater are 

not. Consequently past seawater 
18

O/
16

O compositions (
18

O
fluid

 values) must be estimated in order 

to use 
18

O
carb

 values for most paleotemperature reconstructions. Problematically, estimates and 

models past seawater 
18

O
fluid

 values are in disagreement by a few to greater than 10 per mil 
hundreds of millions to billions years in the past (Muehlenbachs and Clayton, 1976; Gregory and 
Taylor, 1981; Gregory, 1991; Kasting et al., 2006; Jaffrés et al., 2007), limiting the utility of 

carbonate 
18

O paleothermometry for many Earth-history questions. For comparison, a 1‰ 

change in 
18

O
carb

 values at Earth-surface temperatures (e.g., 0-30°C) but fixed 
18

O
fluid

 is 
equivalent to an approximately 4-5°C change in mineral formation temperature (e.g., Kim and 
O'Neil, 1997). 
 

An alternative approach to 
18

O
carb

-based paleothermometry is the reconstruction of formation 
temperatures using the distribution of isotopes within carbonate groups. Specifically, the 
abundance of carbonate groups with more than one rare (generally heavy) isotope (a ‘clumped’ 
isotopologue), such as 

13
C

16
O

2

18
O

2-
, relative to a random distribution of isotopes amongst all 

isotopologues is a unique function of temperature for an isotopically equilibrated system. This 
temperature dependence has been demonstrated for carbonates using theory (Schauble et al., 
2006), experiments (e.g., Ghosh et al., 2006; Dennis and Schrag, 2010; Zaarur et al., 2013; Kluge 
et al., 2015; Defliese et al., 2015; Kelson et al., 2017), and observations of natural and biological 
materials formed at known temperatures (e.g., Ghosh et al., 2007; Tripati et al., 2010; Eagle et 
al., 2010; Thiagarajan et al., 2011; Henkes et al., 2013; Grauel et al., 2013; Came et al., 2014; 
Wacker et al., 2014; Douglas et al., 2014; Eagle et al., 2015; Kele et al., 2015; Katz et al., 2017). 

Carbonate clumped-isotope abundances are currently quantified through the measurement of 

mass 47 CO2 molecules (
13

C
16

O
18

O, 
12

C
17

O
18

O, and 
13

C
17

O2) released from carbonate minerals 

via phosphoric acid digestion (Ghosh et al., 2006). Excesses of mass 47 CO2 molecules relative 

to a random distribution of isotopes is expressed by the symbol 47 
(footnote 2)

. At isotopic 

equilibrium, 47 values are monotonic functions of mineral formation temperatures (e.g., Ghosh 
et al., 2006; Dennis and Schrag, 2010; Zaarur et al., 2013; Kluge et al., 2015; Defliese et al., 

2015; Kelson et al., 2017).  

                                                
1
  sample/Rstandard-1) × 1000 where R=[13C]/[12C] for carbon isotopes and [18O]/[16O] for oxygen isotopes. For 

carbon isotopes, samples are referenced to the VPDB scale and for oxygen isotopes, to VSMOW. 
2
 47=([47R][47R*]-1) × 1000 where 47R=[13C16O18O+12C17O18O+13C17O2]/[

12C16O2] and * denotes the random 

distribution.  
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Importantly, measurements of 47 values can be used to reconstruct past formation temperatures 

of carbonate minerals regardless of the average oxygen isotopic composition of the fluid 

(including both liquid water and igneous melts) or solid (e.g., in solid-state phase changes) from 

which the carbonate crystalized — such a reconstruction implicitly assumes the carbonate 

formed in internal isotopic equilibrium. Indeed, the combination of formation temperatures 

derived from 47 values along with 
18

Ocarb values allows the 
18

O value of the formational fluid 

or solid to be estimated. This approach has been used to estimate the oxygen-isotopic 

composition of seawater from which ancient carbonates precipitated (e.g., Came et al., 2007; 

Finnegan et al., 2011; Petersen and Schrag, 2015; Bergmann et al., in press).  

 

Use of 
18

O
carb

 and 
47
 values to reconstruct past carbonate formation temperatures in the surface 

ocean implicitly requires that the carbonates being analyzed faithfully record their ‘original’ 
isotopic composition established during initial crystallization. However, based on studies of 
carbonate and pore-fluid Sr, O, Ca, and Mg concentrations and isotopic compositions as well as 
scanning electron microscopy, it has been demonstrated that deep-sea carbonates can undergo 
extensive recrystallization (10s of percent) during burial and lithification over tens of millions of 
years (Richter and DePaolo, 1987, 1988; Richter and Liang, 1993; Schrag et al., 1995; Pearson et 
al., 2001; Fantle and DePaolo, 2006, 2007; Higgins and Schrag, 2012; Fantle, 2015). We use the 
term ‘recrystallization’ to indicate the reactions that dissolve and reprecipitate minerals with no 
net change in the overall mass of carbonate mineral (other than removal or addition of trace 
constituents such as Mg or rare isotopes); i.e., recrystallization is used to discuss diagenetic 
reactions in which dissolution and reprecipitation rates are equal. We note that other uses of 
recrystallization sometimes include processes in which carbonate mineralogy is changed such as 
the conversion of aragonite to calcite or conversion of either to dolomite. This type of 
recrystallization is often referred to as neomorphism and commonly occurs in shallow-water 
depositional systems found on continental shelves and slopes (e.g., Brand and Veizer, 1981; 
Banner and Hanson, 1990; Melim et al., 2001; Melim et al., 2002; Dyer et al., 2017; Higgins et 
al., 2018).  
 
Here we explore with a quantitative model the effects of dissolution-reprecipitation reactions 

(i.e., recrystallization) on 
47
 values in carbonate sediments during burial and lithification. We 

first take established mathematical frameworks used to quantify how dissolution-reprecipitation 

reactions in carbonate sediments affect chemical and bulk isotopic compositions (i.e., 
18
O and 


13

C values) of carbonate minerals (Richter and DePaolo, 1987, 1988; Schrag et al., 1992, 1995; 
Fantle and DePaolo, 2006; Fantle et al., 2010; Higgins and Schrag, 2012) and extend them to 

include predictions of how 
47
 values change during diagenesis. We then ground truth the model. 

This is done by comparing model predictions developed previously to describe changes in 
18
O

carb
 

values that necessarily predict how diagenesis effects 
47
 values — this is because 

18
O

carb
 values 

are, in part, set by the temperatures of carbonate precipitation and diagenesis (along with fluid 


18

O values; Killingley, 1983; Schrag et al., 1992, 1995; Schrag, 1999). Specifically, we compare 
model results constrained by independent predictions of various boundary conditions (e.g., 
seawater temperatures, recrystallization rates, and others discussed below) to newly measured 
carbonate clumped-isotope temperatures at Ocean Drilling Project (ODP) site 807 on the Ontong 
Java Plateau in the western Pacific Ocean. This exercise demonstrates that the trend of our 

measured 
47
 values vs. depth are predicted by previous models of diagenesis providing 

confidence in both the model and the external boundary conditions. Following this, we explore 
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the model’s validity in shallow-water continental shelf settings via comparison of model 
predictions to previously published data from the Bahamas (Winkelstern and Lohmann, 2016) 
and show the model can explain measurements made on samples from these settings. 
 

2. Methods 
 

2.1 Sample selection and preparation 
 
Archived samples were selected from the ODP site 807 core (Kroenke et al., 1991). This core 
was taken in the equatorial western Pacific (Fig. A1) and penetrated over 1.3 km of carbonate 
sediment. Sediment ages range from the quaternary to the Cretaceous and are typically >90% by 
weight calcium carbonate. The ooze-chalk transition occurs between 252-312 meters depth 
below the seafloor (mbsf) while the chalk-limestone transition is defined at 1098 mbsf, but 
lithification to limestone begins at ~850 mbsf (Borre and Fabricius, 1998). Typical sedimentation 
rates range from 18-34 meters per million years. Further information on the core and 
sedimentary properties can be found in Kroenke et al. (1991). 
 
At Princeton, bulk samples were sieved in methanol into different size fractions including <20, 

20-65, 65-250 and >250 m and air dried and then shipped to the California Institute of 

Technology for isotopic measurements. In some cases the samples between 20-250 m in size 
were combined to make a single size fraction.   
 

2.2 Isotopic measurements 
 

 carbonate 
13
C

carb
, 

18
O

carb
, and 

47 
values were made at the California Institute of 

Technology. CO
2
 was extracted from samples using a phosphoric acid digestion, purified, and 

introduced to a Thermo-Finnigan 253 isotope-ratio mass spectrometer using an automated acid-
digestion and gas-purification device described in Passey et al. (2010). Isotopic ratios were 
measured following the procedures outlined in Eiler and Schauble (2004), Huntington et al. 
(2009), and Dennis et al. (2011). 
 


13

C
carb

 and 
18

O
carb

 values are reported relative to the VPDB scale and VSMOW respectively 

based on a previously calibrated gas standard (OzTech). 
13

C
carb

 and 
18

O
carb

 values were 
calculated based on the isotopic compositions of VSMOW and VPDB given in Santrock et al. 
(1985). We justify our use of the Santrock et al. (1985) VSMOW and VPDB values in Section 
A1.  
 

Carbonate 
18

O values were calculated from the measured CO2 
18

O values using the isotopic 

fractionation factor (
18

RCO3/
18

RCO2) for phosphoric acid digestion at 90°C of 1.00821 (Swart et al., 

1991). Gases equilibrated at 25°C using water and 1000°C in quartz-glass tubes were used to 

place 
47
 measurements into the absolute reference frame (Dennis et al., 2011). 

47
 values are 

given in the 25°C acid-digestion reference frame by assuming a difference between samples 
digested between 90 and 25°C of 0.092‰ (Henkes et al., 2013). 

 

Multiple calibrations currently exist for the conversation of 
47
 values to clumped-isotope-based 

temperatures. The dependence of 
47
 vs. temperature for these calibrations differs by up to 2x 

and depends on the laboratory that generated the calibration (Ghosh et al., 2006; Dennis and 
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Schrag, 2010; Dennis et al., 2011; Zaarur et al., 2013; Defliese et al., 2015; Kluge et al., 2015). 
Although why calibrations differ between laboratories remains uncertain, recent results indicate 

that standardization protocols using carbonate standards with agreed upon 
47
 values can allow 

different laboratories to converge on a single calibration line (e.g., Daeron et al., 2017). As this 
work was initiated and completed before this standardization routine has become widespread, we 
present our data as measured at Caltech in the absolute reference frame. Isotopic values for 

standards measured at Caltech are given in Table S1 and S2. When a unified temperature vs. 
47
 

calibration is agreed upon, our 
47
 data can be cast into that reference frame based on the values 

for the standards we measured. Critically, it appears that as long as the 
47

 values are measured in 
the same laboratory where the calibration used was generated, then the calculated clumped-
isotope temperatures will be correct regardless of any later interlaboratory standardization — 

such standardization should translate the 
47
 value along with the calibration of the laboratory 

value to that interlaboratory reference frame and leave the calculated temperatures unchanged. 
Thus when discussing our data, we use a temperature calibration generated at the Caltech 
laboratory. Likewise, when discussing the data of from Winkelstern and Lohmann (2016), we 

use the 
47
 vs. temperature calibration of Defliese et al. (2015), as both the that and calibration 

were generated in the same laboratory.  
 

We convert our 
47

 values to clumped-isotope-based temperatures using calibration data 
generated in the Caltech laboratory. Specifically we use the calibration of Ghosh et al. (2006) as 

given in the absolute reference frame by Dennis et al. (2011) to convert 
47
 values to apparent 

clumped-isotope temperatures for samples measured here. Although this calibration is based on 
the precipitations of inorganic calcite at only 4 distinct temperatures, it has been verified in 
subsequent studies of biogenic samples with known carbonate formation temperatures measured 
at the California of Institute of Technology (Ghosh et al., 2007; Came et al., 2007; Eagle et al., 
2010; Tripati et al., 2010; Thiagarajan et al., 2011; Eagle et al., 2015). To demonstrate this, we 
compiled previous measurements made at Caltech for samples with known formation 
temperatures (both inorganic and biogenic) form 1 to 1650°C in the absolute reference and 

compared it to the Ghosh et al. (2006) calibration from 1-50°C (see Fig. A2). Deviations in 
47
 

values between the two calibrations from 1 to 50°C range from -0.004 to +0.01‰, all within the 

typical precision of 
47
 measurements (0.01‰, 1 standard deviation []). For consistency with 

previous studies, we use the Ghosh et al. (2006) calibration for our temperature reconstructions 
from 1-50°C and note that use of a larger complied calibration has no effect on our model or 
conclusions. Finally, for model calculations when sedimentary temperatures exceed 50°C, we 
use this larger calibration (Fig. A20 to ensure we are always interpolating between calibrated 

points for temperature vs. 
47
.  

 
Samples were measured at least 2-3 times with replication occurring in different analytical 

sessions (except sample 9H3, >250 m, which was only measured once). An analytical session is 
defined here as a period of time in which samples and standards were measured continuously and 
compared to a single set of 1000°C heated and 25°C equilibrated gases. These sessions generally 
lasted ~1-2 weeks. Different analytical sessions for this study are separated in time (typically ~1-
2 months) by other analytical sessions in which carbonate samples unrelated to this study were 
measured. 
 
In all analytical sessions, two standards, a Carrara Marble standard (n = 43) and a travertine 

standard (TV01; n = 41) were measured to monitor and evaluate the accuracy and precision of 
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the isotopic measurements between and within sessions. Average 
18

O
carb

 and 
13
C

carb
 values of the 

standards are both within 0.11‰ of expected values (Table A1). Standard deviations for 
18
O

carb
 

and 
13

C
carb

 values of the standards were 0.24 and 0.11‰. This is significantly higher than typical 

precisions for these analyses: ~0.1‰ for 
18

O
carb

 and 0.05‰ for 
13

C
carb

 (e.g., Stolper and Eiler, 

2016). 
18
O

carb
 and 

13
C

carb
 of standards run within a single session show average standard 

deviations of 0.05‰ and 0.04‰ respectively, indicating the imprecision was due to differences 
between analytical sessions. 
 

To deal with this, sample 
18

O
carb

 and 
13
C

carb
 values from a given analytical session were corrected 

based on the average difference between expected vs. observed values for the standards for that 

session. For example, if standards were on average elevated in 
18

O
carb

 in a given session by 
0.1‰, 0.1‰ was subtracted from all samples measured in that analytical session. This follows 
typical standardization techniques for isotopic measurements (e.g., Coplen et al., 2006). This 
standardization reduces the pooled standard deviations of all samples from 0.16 and 0.09‰ for 


18

O
carb

 and 
13

C
carb

 values to 0.06‰ and 0.07‰, respectively. Average corrected values for 
samples are given in Table 1. Individual measurements for all samples are given in 
Supplementary Table 1. 
 

Average m 
47
 values of both standards are within 0.01‰ of the expected values (Table 

A2). Standard deviations are 0.011‰ for the Carrara marble standard and 0.016‰ for the TV01 
standard. The pooled standard deviation for the samples is 0.012‰. Thus the external 

reproducibility of 
47
 values for samples and standards is similar to the counting-statistics based 

expected external precision of the measurement (~0.01‰). Despite this level of reproducibility, 

we additionally corrected the 
47

 data based on deviations for the standards from their expected 
values for each analytical session. Specifically, we made our corrections using the observed 

deviation in the 
47

 value of the standard as a linear function of the 
47
 value — this is based on 

the correction scheme given in Thiagarajan et al. (2014). Application of this correction scheme 
does not change the external precision (the pooled standard deviation for samples remains at 
0.012‰), but ensures samples corrected for their bulk isotopic compositions are also corrected 

for the 
47
 values. Average corrected 

47
 values for samples are given in Table 1. Uncorrected 

and corrected 
47
 values of every measurement are given in Supplementary Table 2.  

 

3. Modeling diagenesis 

 

3.1 Diagenesis in deep-sea sediments 
 
The effects of diagenesis on the chemical and isotopic composition of deep-sea carbonates has 
been explored extensively using both numerical models and measurements of the isotopic and 
chemical composition of carbonates and pore fluids for a variety of elements including oxygen, 
magnesium, and strontium (Killingley, 1983; Richter and DePaolo, 1987, 1988; Schrag et al., 
1992; Richter and Liang, 1993; Schrag et al., 1995; Fantle and DePaolo, 2006; Fantle et al., 
2010; Higgins and Schrag, 2012). Here, we first review the conceptual and quantitative 
framework of these models (section 3.1.1). Then we extend these models to include the effects of 

diagenesis on 
47
 values (section 3.1.2) and finally we provide illustrative calculations of the 

effects (both in magnitude and direction) diagenesis can have on 
47
 values in deep –sea (section 

3.1.3) and shallow-water (section 3.2) sediments.  
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3.1.1 Background for deep-sea sediments 
 
Carbonate sediments in the deep sea (>1000 m depths) today are largely composed of the 
remnants of organisms (coccolithophores and foraminifera) that live and calcify in the photic 
zone of the water column (typically the top ~100 m of the water column). As a result, the 
chemical and isotopic composition of bulk deep-sea carbonate reflects the conditions (e.g., 
temperature) of carbonate formation at or near the sea surface when first deposited on the 
seafloor (assuming no diagenesis occurs during sinking). During burial and lithification, 
dissolution-reprecipitation (i.e., recrystallization) reactions occur that can modify the chemical 
and isotopic composition of sedimentary carbonate. The consequences of diagenesis for the 
chemical and isotopic composition of carbonates in deep-sea sediment can be significant as the 
temperature and chemical composition of pore fluids in sedimentary systems can differ from 
those found in the surface ocean (up to ~50°C for the first kilometer of burial). For example, 
diagenetic recrystallization of deep-sea carbonates is thought to have modified many Eocene-

Paleocene deep-sea carbonates such that 
18

O values yield surface-water temperatures that are 
~10°C lower than the original formation temperature of the samples (Schrag et al., 1995; Pearson 
et al., 2001; Kozdon et al., 2011), though see Bernard et al. (2017) for a recent, alternative view 

on the effects of diagenesis on 
18

O
carb

 values in deep-sea sediments. 
 
Models that describe rates of carbonate diagenesis in deep-sea sediments (e.g., Richter and 
DePaolo, 1987) generally specify (i) the boundary conditions of the system including the 

temperature and isotopic/chemical composition of the surface ocean, temperature at the 

sediment-water interface, and the geothermal temperature gradient in the sediments; (ii) The 

sedimentary deposition and compaction rates; (iii) The rates of sediment dissolution and 

reprecipitation; And (iv) the diffusion of dissolved species in the fluids — diffusion within the 
solid is ignored. All of these parameters are allowed to vary as a function of time. 
 
These models also assume carbonate that forms in the sediment column (i.e., that is diagenetic in 
origin), forms in isotopic equilibrium with the co-occurring pore fluids. This assumption is 
supported by inferred rates of carbonate precipitation in deep-sea sediments (~10

-19
 mol/m

2
/sec; 

Fantle and DePaolo, 2007), which is orders of magnitude lower than previously estimated rates 
(~10

-12
 mol/m

2
/sec) required to form carbonate minerals in carbon, oxygen, and clumped isotopic 

equilibrium with water regardless of the temperature or pH of the system (Watkins et al., 2013; 
Watkins et al., 2014; Watkins and Hunt, 2015).  
 

The model we use to quantify the effects of diagenesis on 
18

O
carb

 and 
47
 values is based on the 1-

D advection-reaction-diffusion model developed by Richter and DePaolo (1987). This model 
was originally used to describe changes in strontium concentrations and isotopic ratios (

87
Sr/

86
Sr) 

of carbonates and pore fluids during burial. It was later extended to include the effects of 

diagenesis on 
18

O
carb

 and 
18

O
H2O

 values in Schrag et al. (1992). Full descriptions of the model 
framework are given in those studies. However, for completeness, key procedural steps of the 
model are reviewed here: First, sediment with defined initial thickness and porosity is added to a 
preexisting sediment column. Second, sediment ‘boxes’ below this newly added box are 
compacted (causing upward advection of pore fluids) and new thicknesses and porosities for 
each box are calculated. Third, all sediment boxes then undergo recrystallization at a model-
defined rate, which is a function of sediment age (see below). Note that recrystallization in a box 
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neither adds nor subtracts any mass such that total dissolution matches total reprecipitation at all 
times (thus conserving mineral and fluid masses during recrystallization). As a result, 
recrystallization in this model does not cause any changes in physical sediment properties (e.g., 
porosity). At this point, the model returns to the first step and continues.   
 
Sedimentation rates are estimated using sedimentary ages (generally constrained by 
biostratigraphy) vs. depth below the seafloor. Compaction rates are estimated using the porosity 
profile in the sediments (e.g., Richter and DePaolo, 1987). Following previous model 
formulations, recrystallization rates, as a percent of the carbonate recrystallized per unit time, 
given by R, are assumed to decrease exponentially as a function of the age of the sediment. The 
equation used has the following form: 
 

 R(t) = rx  + rxe
-t / rx  (1) 

 

where t is time, and 
rx
 m ), 

rx
 m ), and 

rx


-1
) are constants. 

rx
, 

rx
, and 

rx
 can be 

estimated using strontium concentrations and isotopic compositions (
87
Sr/

86
Sr ratios) in pore 

fluids and sediments (Richter and DePaolo, 1987, 1988; Richter and Liang, 1993; Schrag et al., 

1995). Note that we also use  below as the symbol for isotopic fractionation factors. Rather 

than change the symbols used in past studies, we use subscripts for  for clarity. 
 

3.1.2 Recrystallization and 
18

Ocarb in deep-sea sediments 
 

Modeling the effects of diagenesis on 
18

O
carb

 values requires knowing the 
18
O

carb
 values of newly 

deposited carbonate sediments. This in turn requires knowledge of the temperature history and 


18

O
fluid

 history of surface seawater and the temperature-dependent fractionation factor between 

the carbonate mineral and water (
carb-H2O

). 
carb-H2O

 is defined as follows: 
 

 
carb-H2O  = 

[18O]carb /[16O]carb

[18O]H2O /[16O]H2O

 = 
1000 + 18Ocarb

1000 + 18OH2O

 (2) 

where square brackets denote concentrations. We note that 
carb-H2O

 values can vary as a function 
of parameters other than temperature including carbonate growth rates and solution pH (e.g., 
McCrea, 1950; Kim and O'Neil, 1997; Zeebe, 1999; Dietzel et al., 2009; Watkins et al., 2014) 
and organism-specific effects (i.e., ‘vital effects’) if the carbonate is biogenic in origin (e.g., 
Erez, 1978; Weiner and Dove, 2003). However, in past models, only the temperature-dependent 
effect has been considered (Schrag et al., 1995). As discussed above, this assumption is likely 
acceptable for carbonates formed during diagenesis given the slow rates of recrystallization.  
 

The temperature dependence of 
carb-H2O

 is taken from Watkins et al. (2013) as given in Figure 6 

of that study and equation 19 of Watkins et al. (2014). We use this 
carb-H2O

 calibration as it 
expresses the fractionation factor for carbonate formation at sufficiently slow rates that the 
oxygen isotopes of carbonate and water are in equilibrium. For site 807 discussed below, the 

same 
carb-H2O 

vs. temperature calibration appears to describe the initial and diagenetic carbonate 


18

O
carb

 values equally well. 
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The isotopic composition of diagenetic carbonate that is incorporated into the sediment during 
dissolution-reprecipitation reactions is controlled by sedimentary temperatures and pore-fluid 


18

O
fluid

 values as a function of sediment depth and age. Sedimentary temperatures are found by 
specifying the temperature history at the sediment water interface (i.e., the temperature of bottom 
oceanic waters) and the sedimentary geothermal gradient. Following previous models (e.g., 

Schrag et al., 1995; Schrag, 1999), we assume that pore-fluid 
18

O
fluid

 values at the sediment-
water interface are identical to bottom water values and that no gradient between surface and 

deep-water 
18

O
fluid

 values exists. We note that gradients between surface and deep waters do 

exist — for example today, 
18

O
fluid

 values of equatorial waters over the Ontong Java are elevated 
by ~0.6‰ relative to deep Pacific waters (Craig and Gordon, 1965; LeGrande and Schmidt, 
2006). As knowledge of this gradient is poor over Earth’s history, we assume surface and deep 
waters were identical, which is in accordance with previous studies (e.g., Schrag et al., 1995; 
Schrag, 1999). 
 

Finally, in previous models (e.g., Schrag et al., 1995; Schrag, 1999), pore fluid 
18

O
 
values were 

assumed to have a constant depth gradient based on observations of pore fluids from a variety of 
deep-sea cores. We follow that assumption here as well. A review of the processes controlling 
sedimentary pore fluid compositions in deep-sea sediments is given in Lawrence and Gieskes 
(1981). 
 

The change in the 
18

O
carb

 value of a sedimentary box can be described by the following equation: 
 

		

d 18O
carb

t ,d

dt
-R t 	 ´ 	 18O

carb
t ,d 	+	R t 1000	+	 18O

H
2
O,	pore	fluid

t ,dé
ë

ù
û carb-H

2
O

	1000é
ë

ù
û

	 , (3) 

 

where 
18

O
carb

(t,d) is the oxygen isotopic composition of the sedimentary box undergoing 

diagenesis at time t and depth d; R(t) is the recrystallization rate of that box at time t; 
18

O
H2O, pore 

fluid
(t, d) is the isotopic composition of the pore fluid in contact with that box; and 

carb-H2O
(T) is the 

oxygen isotope fractionation factor between carbonate and water at temperature T. We note that 

formulating the problem in this manner makes the typical assumption that 
18

O values can be 
treated as analogous to the concentration of 

18
O in the various phases (Criss, 1999).  

 
This equation can be rewritten in the following manner:  
 

 
		

d 18O
carb

t ,d

dt
-R t 	 ´ 	 18O

carb
t ,d 	+	R t 	 ´ 	 18O

carb,	diagenetic
t ,dé

ë
ù
û

	 . (4) 

 

Here, 
18

O
carb, diagenetic

 is the isotopic composition of the carbonate formed in sedimentary column 
and added to the box. For a given time step, dt, the model removes [R(t) x dt] percent of the 

original carbonate and replaces it with [R(t) x dt] percent diagenetic carbonate. Thus the total 
mass of carbonate in a box remains constant. The density of the box changes due to loss of 
porosity via pore-fluid advection during compaction. 
 
We do not develop equations that track the isotopic composition of the fluids as the gradient 
describing the oxygen isotopic composition of the pore fluid, as discussed above, is assumed to 
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be constant (Schrag et al., 1995; Schrag, 1999). The relevant equations that describe the isotopic 
evolution of the fluid are given in Schrag et al. (1992). 
 

3.1.3 Extension of the diagenetic model to 47 values for deep-sea sediments 

 

The extension of the diagenetic model to include 
47
 values involves the addition of no additional 

free parameters. This is because 
47
 values are defined solely by a sample’s formation 

temperature (for a phase formed in isotopic equilibrium). Temperature histories for (i) the 

surface ocean, (ii) the sediment-water interface, and (iii) within the sediment column are 

necessarily prescribed by any diagenetic model that describes 
18

O
carb

 values. Consequently, any 

model that seeks to describe the effects of diagenesis on 
18

O
carb

 values during burial necessarily 

predicts the 
47
 value of carbonates undergoing burial and diagenesis as well. 

47
 values can thus 

serve to independently test models of carbonate diagenesis based on 
18

O
carb

 values. 
 

Carbonate formed in pore fluids can have 
47
, 

18
O

carb
, and 

13
C

carb
 values different from the bulk 

sediment undergoing recrystallization. When this diagenetic carbonate is added to the bulk 

sediment, the 
47
 value of this sediment will not necessarily represent a weighted average (by 

carbonate weight percent) of 
47
 values of the original and newly added carbonate. Specifically, 

non-linear 
47
 mixing effects occur when the 

18
O and 

13
C of end members differ substantially 

(~10s of per mil; Eiler and Schauble, 2004; Affek and Eiler, 2006; Defliese and Lohmann, 

2015). Non-linear mixing effects for 
47
 values often can be neglected in models of diagenesis 

(e.g., Stolper and Eiler, 2016) where the 
13

C value of the diagenetic and original carbonate 

components do not differ substantially regardless of the 
18
O

carb
 value of the carbonate added 

during diagenesis. In section A2, we demonstrate that such an assumption is acceptable when 

modeling diagenesis at site 807. Thus, we do not explicitly model changes in pore-fluid 
13

C 

values and the effects of recrystallization on bulk carbonate 
13

C values.  
 

Under the assumption that 
47
 mix linearly during diagenesis in deep-sea carbonate sediments, 

we can express the rate-of-change of 
47
 of carbonate undergoing recrystallization as follows: 

 

 
		

d
47,	carb

t ,d

dt
-R t 	 ´ 	

47,	carb
t ,d 	+	R t 	 ´ 	

47,	carb,	diagenetic
t ,dé

ë
ù
û

	 . (5) 

 

Here 
47, carb

 (t, d) is the 
47
 value of the sedimentary carbonate undergoing diagenesis and 

47, carb, 

diagenetic
 (t, d) is the 

47
 of the diagenetic carbonate formed in the sedimentary column. For all 

examples below, the 
47
 vs. temperature calibration of Ghosh et al. (2006) is used (translated into 

the absolute reference frame in Dennis et al., 2011). 
 
 

3.1.4 Illustrative examples of the diagenetic model in deep-sea sediments 

 

Here we examine two end-member examples commonly seen in deep-sea settings — this follows 

the sorts of examples given in Schrag et al. (1992) for the effects of diagenesis on 
18

O
carb

 values. 
In the first, carbonate forms at 30°C in the upper water column and then falls to the seafloor. We 
assume a seafloor temperature of 0°C, which is within the range of modern and glacial deep-
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water temperatures (-2 to +3 °C; Adkins et al., 2002) (Fig 1A-F). This example illustrates what 
occurs in typical modern low-latitude deep-sea sediments. In the second example, surface waters 
and the seafloor are both held at 0°C, mimicking modern high-latitude environments; Fig. 2A-F). 
 
For all examples, we assume no compaction occurs, that calcium carbonate accumulates at a rate 
of 20 meters per million years and that a constant geotherm of 30°C/km exists. Compaction is 
critical for relating depth of sediments to the age of the sediments in the model as well as for 
diagenetic problems that involve the explicit modeling of pore fluid compositions. As we are not 
modeling changes in pore-fluid compositions nor are we matching a specific age-depth 
relationship, compaction can be (and is) ignored for the examples explored here. We assume the 


18

O
fluid

 value of the ocean is constant at 0‰ and that pore fluid 
18

O
fluid

 values are constant with 
depth and identical to seawater. Finally, we assume the following recrystallization parameter 

values:   = 0.2 (%/myr),   = 6 (%/myr), and   = 5 (myr). These values are typical of values 
used in previous models of bulk sedimentary recrystallization (Richter and Liang, 1993). We do 
not vary the temperature histories of the surface or bottom water temperatures of the ocean for 
these examples. 
 

For systems in which carbonates form initially at 30°C and begin diagenesis at 0°C, 
18

O
carb

 
values increase by 1.7‰ over the first 500 meters of diagenesis (Fig 1A and B). Below 500 

meters, 
18

O
carb

 values do not change significantly. Note, this is not because recrystallization has 

stopped. Rather, the 
18

O
carb

 value of the diagenetic end member and the sedimentary values are 

sufficiently similar such that the 
18
O

carb
 value of the recrystallizing sediment does not change 

over this depth interval. 
47
 values also increase over the first 500 meters by 0.04‰ (Fig 1C and 

D), equivalent to a decrease in clumped-isotope-based temperatures of 8°C (Fig 1E and F) and 
then reach stable values — again this is not because recrystallization has ceased, but is instead 

due to similarities in sedimentary and diagenetic carbonate 
47
 values over this depth range. As 

typical precisions of 
47
 measurements (at 1 standard error) range from 0.01-0.02‰, this change 

should be analytically resolvable. We note that the 
18

O
carb

 results are in agreement with previous 

illustrative models on the effects of diagenesis on 
18

O
carb

 values (Schrag et al., 1992). 
 
In contrast, when surface and deep-ocean temperatures are similar (in our example 0°C), smaller 

changes in 
18

O
carb

 and 
47
 values are observed. For our example, 

18
O values decline by 0.6‰ 

over the first 1200 meters of deposition (Fig 2A and B). 
47

 values decline by 0.015‰ (Fig. 2C 

and D), which yields an increase of 2.5°C for equivalent 
47

-based temperatures (Fig. 2E and F). 


47
 precisions of 0.005 ‰ (1 s.e.) are possible with replicate analysis (Thiagarajan et al., 2011), 

but such differences would be challenging to resolve given typical precisions of 0.01-0.02‰. 

Again, the 
18
O

carb
 results are in agreement with previous models on the effects of diagenesis on 


18

O
carb

 values (Schrag et al., 1992). 
 
A general result from these models is that the larger the difference between carbonate formation 
and initial burial temperatures (i.e.. sediment-water interface temperatures), the larger the overall 
change in the isotopic composition of the bulk sediment over the first ~1 km of burial. For the 
examples discussed above, the recrystallization rates are identical and decline with depth with an 

e-folding length scale of 100 meters for the   term in equation (1). For this reason, most of the 
recrystallization is concentrated in the ~top 200 meters of the sediment column.  For the low-
latitude example, this depth interval is where the difference between formational and diagenetic 
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temperatures is at a maximum. This results in larger diagenetic changes in both 
18

O
carb

 and 
47
 

values with depth for low-latitude systems relative to the high-latitude example where 
formational and burial temperatures are more similar over the first 200 meters of burial. In 
Figure A3, we provide examples of model calculations for variations in reaction rate, 
depositional rate, and the sedimentary geotherm. 
 

3.2. Diagenesis in shallow sediments 
 

Carbonates from ancient shallow-water (e.g., shelf) settings commonly yield apparent 
47
-based 

temperatures greater than 40°C. Such temperatures are often considered too warm to represent 
Earth-surface conditions (e.g., Came et al., 2007; Eiler, 2011; Finnegan et al., 2011; Stolper and 
Eiler, 2016; Winkelstern and Lohmann, 2016), at least over the Phanerozoic. A common 
explanation for some of these elevated temperatures is that they are the result of dissolution-
reprecipitation reactions occurring during sedimentary burial at elevated temperatures. 

Additionally, solid-state isotope-exchange reactions can also result in changes in 
47
 values for 

samples that reach burial temperatures greater than ~100°C for calcite (Passey and Henkes, 
2012; Henkes et al., 2014; Stolper and Eiler, 2015; Shenton et al., 2015). In this section, we 
explore the predictions of the model developed for deep-sea sediments for shallow-water 
systems. 
 

3.2.1 Model considerations for shallow sediments 
 
Before applying the deep-sea diagenetic model to shallower systems, we first consider whether 
such an extension is appropriate. Shallow-water sediments differ from deep-water settings in a 
variety of ways. For example, advection of fluids can occur in the top 10s of meters of sediment, 
effectively flushing out diagenetically modified fluids with seawater (Swart, 2000); Glacial-
interglacial sea-level changes can expose sediments to meteoric fluids (Melim et al., 2001); And 
rapid changes in mineralogy (aragonite to calcite) can occur in the top 100-200 meters of 
sediments (Melim et al., 2002).  
 
Another difference between shallow- and deep-water settings is that shallow water settings can 
contain significant (weight percent) concentrations of organic carbon, or, during low-stands, 
experience flushing of fluids with dissolved inorganic carbon derived from the respiration of 

organic carbon (Swart and Kennedy, 2012). Both processes can influence the 
13

C values of total 
dissolved inorganic carbon in pore fluids. For example total dissolved inorganic carbonate in the 
top 100 meters of submerged carbonates in the Bahama Banks platform are commonly ~5‰ 

lower in 
13
C than bulk carbonate at equivalent depths (Kramer et al., 2000; Swart and Eberli, 

2005). However, by ~400 mbsf, 
13

C value of dissolved inorganic carbon and carbonate at a 
given depth are typically within 1‰ of each other, and thus close to being in isotopic equilibrium 

(calcite ~1‰ greater in 
13

C than disolved inorganic carbon; Zeebe and Wolf-Gladrow, 2001). 
Consequently, although diagenetic processes in the top hundred meters below the seafloor in 

shallow-water carbonate platforms can affect 
13
C

carb
 values, the carbon isotopes are stabilized at 

greater depths.  
 
Importantly, the processes discussed above are restricted to the top ~400 meters of the 
sedimentary column. For shallow-water systems, the temperature difference between the 
depositional and diagenetic temperatures over this depth range are 10°C for a typical 25 °C/km 
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geothermal gradient. As seen in the example of diagenesis in deep-sea sediments in which the 
formation and initial diagenetic temperatures are identical and the geothermal gradient is 30 

°C/km (Fig. 3) diagenesis has a limited effect on 
47

-based temperatures: ~1°C over the first 400 
meters. 
 
Thus, these processes, though important for understanding the diagenetic history of platform 

carbonates (Higgins et al., 2018), are unlikely to have a significant effect on 
47
-based 

temperatures as they are restricted to the top ~400 meters of burial. Rather, the problem of 
interest here is whether slower rates of recrystallization matter at significant depths (>1000 
mbsf), in which burial and formation temperatures diverge by more than 25°C, for the 
interpretations of clumped-isotope-based temperatures of ancient carbonates formed in shallow 

water settings. As 
13

C values at these depths between dissolved inorganic carbon and carbonates 

are similar, we treat 
47
 values as mixing linearly and use equation (5) to describe the effects of 

diagenesis on 
47
 values. Further discussion of this is given section A2. 

 

3.2.2 Model predictions for shallow sediments 

 
We model the effects of diagenesis in shallow sediments using the same general model 
formulation as describe in section 3.1. Given the potential effects of meteoric diagenesis in the 

top ~500 meters of the sediment column, we do not attempt to model changes in 
18
O

carb
, but 

instead focus on 
47

 values which are insensitive to the 
18

O
fluid

 value of pore fluids. We assume 
for this exercise constant sea-surface temperatures of 25°C (a typical tropical sea-surface 
temperature) and that bottom water temperatures are identical to sea-surface temperatures (i.e., 
25°C). We assume a 25°C/km geotherm (a typical value for continental settings). We use a 
constant depositional rate of 20 meters/myr (i.e., the same as for the deep-sea example above). 
We show the output of the model to depths of 3 km, i.e., to burial temperatures of ~100°C. We 
choose this temperature cut off as, for calcite, the influence of solid-state isotope-exchange 
reactions on clumped-isotope compositions becomes increasingly important to consider at burial 
temperatures above 100°C (Passey and Henkes, 2012; Henkes et al., 2014; Stolper and Eiler, 

2015; Shenton et al., 2015). For this calculation, we used the 
47
 vs. temperature calibration 

constrained from 1-1650°C (Fig. A2) as discussed in section 2.2. 
 

We use equation (1) to describe the recrystallization rate. We use   = 6 (%/myr), and   = 5 
(myr), which are the same as those used in section 3.1 for deep-sea diagenesis. The choice of 

these parameters is relatively unimportant for 
47
 values of diagenetically modified platform 

carbonates. We ran the model with three different constant background recrystallization rates 

[ ] of 0.1, 0.5, and 1 %/myr. These values are within the range of   values used in previous 
models (Richter and Liang, 1993; Schrag et al., 1995; Schrag, 1999).  
 

Model outputs are given in Figure 3. 
47

-based temperatures change between 1-5°C over the first 
kilometer of burial. This is despite significant amounts of recrystallization occurring over the 
first kilometer, 32-55% total recrystallization depending on the chosen rate of background 

recrystallization rate [  in equation (1)]. The reason for this relatively small change in 
47
 

despite extensive recrystallization is that most of this recrystallization is localized in the top few 

hundred meters of the sediment column where the differences between bulk carbonate 
47
-based 

temperature and the diagenetic end member diverge by <10°C. This is identical to the case for 



  

 14 

both 
18

O
carb

 and 
47

 values that occurs in deep-sea settings at high latitudes where surface and 
deep waters have similar temperatures (e.g., Fig. 2; Schrag et al., 1992; Schrag et al., 1995). 
 

In the model,   values of 0.1 %/myr result in relatively small changes in 
47
 values and 

47
-

based temperatures over the first 3 km of burial: 
47
 values decrease by 0.02‰, equivalent to an 

increase in 5°C. Background recrystallization rates of 0.5 to 1 ‰/myr result in significantly 

larger changes in 
47
 values with depth, especially below 1 km. Specifically, for   values of 0.5 

and 1 %/myr, 
47
 values decrease by 0.07‰ and 0.115‰ respectively. This is equivalent to an 

increase in clumped-isotope-based temperature of 19 and 32°C respectively.  

 

4. Carbonate samples from the equatorial Pacific, Ocean Drilling Project site 807 
 

4.1 Site 807 description 

 
Carbonate samples from the equatorial western Pacific spanning the Cenozoic were measured for 


18

O
carb

, 
13

C
carb

, and 
47
 values. Samples were selected from cores drilled at ODP site 807 (Fig. 

A1). This site was chosen, in part, because it has been used in numerous previous studies on the 
effects of diagenesis on the concentrations and isotopic composition of strontium (Fantle and 
DePaolo, 2006), calcium (Fantle and DePaolo, 2007), and magnesium (Higgins and Schrag, 

2012) in carbonates and pore fluids as well as 
18

O
carb

 values (Schrag et al., 1995). All diagenetic 
models imply substantial amounts of recrystallization occurred at site 807. Specifically, 
estimates of total percent recrystallization from 0 to 1000 meters core depth vary from 35% 
(Fantle and DePaolo, 2006) to 90% (Schrag et al., 1995). For comparison, the illustrative model 
(Section 3.1) described above yields 40% total recrystallization by 1000 meters depth.  
 
In the context of the end-member diagenetic scenarios discussed in Section 3.1, site 807 is 
representative of a low-latitude example site in which carbonates form at elevated temperatures 
in the surface ocean and are initially diagenetically altered at lower temperatures in sediments. 
Specifically, the surface waters above site 807 in the Western Pacific Warm Pool are ~30 °C 
today while deep waters in the area are about 2°C (Locarnini et al., 2006). Based on the 
illustrative models in Section 3.1, such environments are expected to yield measureable changes 

in both 
18
O

carb
 (~2‰) and 

47
 (~0.04‰) values during burial. 

 

4.2 Site 807 
18

Ocarb values 
 


18
O

carb
 values from foraminifera and bulk sediments have been measured previously 

(Prentice et al., 1993; Corfield and Cartlidge, 1993; Schrag et al., 1995). 
18
O

carb
 values from 

other Ontong Java Plateau deep-sea drilling cores are also available (Tripati et al., 2014; Fig. 

4A). 
18
O

carb
 values of bulk sediments from the Ontong Java plateau, as discussed in Schrag et al. 

(1995), are thought to have been modified substantially by diagenetic recrystallization during 

burial. Specifically, bulk sedimentary 
18
O

carb
 values increase by ~1.5‰ over the first 200 meters 

of the core (Fig. 4A). This increase in 
18

O
carb

 over the first 200 meters of the sediment column is 
consistent with the expected effects of diagenesis on carbonates formed at elevated temperatures 
(30°C), undergoing diagenesis in colder bottom waters (e.g., Fig 1A and B; Schrag et al., 1992; 

Schrag et al., 1995). 
18

O
carb

 values are stable from 200-800 meters, but then decreases below 800 

meters. The background recrystallization rate (0.5%/myr — 
rx
 in equation (1)) used by Schrag 
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et al. (1995) is insufficient to cause this decrease below 800 meters for estimated geothermal 
gradients at this site (25-35°C/km). Instead, this decrease was attributed to a warmer (2-6°C) 
surface ocean temperatures in the Paleogene relative to today (Schrag et al., 1995; Schrag, 1999).  
 
Handpicked foraminifera from site 807 have also been measured (Prentice et al., 1993). The 

foraminiferal data are generally offset to lower 
18
O

carb
 values than the bulk sediment (Fig. 4A). 

There appears to be a smaller increase in foraminiferal 
18

O
carb

 values with depth vs. in bulk 

sediments: Deeper foraminiferal samples (>440 m) are elevated in
18

O by 0.2‰ relative to the 
shallower samples (<10 m) compared to the ~1.5‰ increase seen in the bulk sediment over the 
same depth range. One possibility is that this difference is the result of slower 
dissolution/reprecipitation kinetics for foraminifera vs. bulk sediment (or at least for the picked 
samples). Alternatively, temporal changes in vital effects of foraminifera carbonate precipitation 

(with older foraminifera having have a smaller 
CO3-H2O

 than younger foraminifera) could be 

masking a diagenetic shift in 
18

O
carb

 values. This is returned to below.  
 

In Figure 4B, 
18
O

carb
 values of the different sedimentary size fractions measured here are 

compared to previously measured 
18

O
carb

 values. Measured 
18

O
carb

 values of the different size 
fractions follow a similar trajectory vs. depth as those for bulk sediments from previous studies. 

Specifically, 
18

O
carb

 values increase by ~1-1.5‰ over the first 200 meters, are approximately 
constant from 200-800 meters, and then decrease at depths greater than 800 meters. 
 

Generally, 
18

O values are ~0.5‰ on average lower for all samples measured in this study 
(regardless of size fraction) as well as for bulk carbonate samples measured in Tripati et al. 
(2014; excluding picked foraminifera) as compared to values given for bulk carbonate samples 
from previous studies (Corfield and Cartlidge, 1993; Schrag et al., 1995). We are unsure of the 
cause of the difference, but it does not impact any interpretations or models described below.  
 
Critically, the isotopic compositions of all size fractions behave in a similar manner and follow 
similar trajectories as the bulk sediment as a function of depth below the sea floor. Based on this, 
we propose that the diagenetic recrystallization rates that describe the bulk sediment are 
applicable to all size fractions. Interestingly, larger size fractions would generally be expected to 
react more slowly than smaller size fractions based on their lower surface area to volume ratios. 

However, pelagic foraminifera, which generally make-up the bulk of the >250 m size, are 
known to have high surface area/volume ratios due to their specific shell morphologies (Pearson 
et al., 2001). Thus, despite larger overall volumes, planktonic foraminifera may react at rates 

similar to smaller size fractions. This would indicate that the differences in 
18
O

carb
 between 

foraminifera and bulk sediments discussed above are largely related to temporal changes in 
CO3-

H2O
 of the picked foraminiferal. 

 

4.3 Site 807 
13

Ccarb values 
 

Site 807 
13
C

carb
 values vary from -0.2 to 3.3‰, with higher values observed deeper in the core. 

We compared the site 807 data to compilations of 
13

C
carb

 from other ODP cores over the 
Cenozoic (Zachos et al., 2001). These compiled records are derived from benthic foraminifera. 

Benthic organisms generally have lower 
13
C

carb
 values than surface dwelling organisms due to 

the respiration of organic carbon in the deep ocean — today, this respiration lowers the 
13

C of 
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dissolved inorganic carbon in the deep ocean by ~1‰ relative to dissolved inorganic carbon the 
surface ocean (Kroopnick, 1985). To directly compare the site 807 data set to the global 

compilation, we subtracted 0.95‰ from the 
13

C
carb

 values of the site 807 data, which is the 
current difference between shallow and deep waters in the equatorial Pacific (Kroopnick, 1985). 
The two data sets are compared in Figure 5. This comparison shows that the relative size of 

changes in site 807 
13

C
carb

 values tracks global changes in deep-ocean dissolved inorganic 
13

C 

values over the Cenozoic. Based on this, we interpret the site 807 
13

C
carb

 values to have been 

largely unaffected by diagenesis and to reflect, dominantly, 
13
C values of the global dissolved 

inorganic pool through time. This is in accord with the typical assumption that carbonate carbon 
isotopes are more difficult to modify during diagenesis than oxygen isotopes due to the lower 
amounts of carbon vs. oxygen in fluids relative to carbonate sediments (e.g., Banner and Hanson, 
1990).  
 

4.4 Site 807 47 values and 47-based temperatures 
 


47
 values vs. depth are shown in Figure 6A. We include here additional measurements from 

Tripati et al. (2014) for samples less than 20,000 years old from nearby Ontong Java Plateau 

sites. 
47
 values of samples range from 0.690 to 0.743‰ and show a similar pattern vs. depth as 

the 
18

O
carb

 values. Specifically, 
47
 values increase over the first ~200 meters, are approximately 

constant from 200-800 mbsf, and then decrease below 800 meters. Measured 
47
-based 

temperatures range from 19 to 29°C.  
 

As was the case for 
18

O
carb

 values, no clear differences in overall trends for the different size 

fractions is apparent. The relationship between 
47
 and 

18
O

carb
 values is shown in Figure 7. 

47
 

and 
18

O
carb

 values are linearly, positively correlated (r
2
 = 0.56). Such a positive correlation is 

what would be expected both for formation as a function of precipitation temperature, and for the 

effects of diagenesis on 
18

O
carb

 and 
47
 values in the context of the model presented above. For 

reference, in Figure 7, the expected slope for this equilibrium relationship is given for waters 

with 
18

O
fluid

 values of -1, 0, and +1‰, the approximate range of values expected for ocean waters 
over the entire Cenozoic (Shackleton and Kennett, 1975; Miller et al., 1987; Adkins et al., 2002). 
The data generally follow the trend expected for generation in isotopic equilibrium with pore 
fluids, but there is complexity with this given the presence of both vital effects during 
precipitation of biogenic sediments and the effects of diagenesis.  
 
Temperatures of surface waters overlying the Ontong Java Plateau (part of the Western Pacific 
Warm Pool water mass) have ranged between 24-30°C over the past 12 million years, with 
temperatures typically 2-4°C warmer in the past 12 million years relative to today (Zhang et al., 
2014). Additionally, Paleogene equatorial surface water temperatures are thought to have been 
warmer than modern waters (up to ~35-40 °C; Pearson et al., 2001; Bijl et al., 2009; Kozdon et 

al., 2011). Thus, 
47

-based temperatures below 24°C are unlikely to represent original carbonate 
formation temperatures and instead likely indicate the occurrence of dissolution-reprecipitation 
reactions.  
 

The shallowest samples (<10 mbsf) range in 
47
-based temperature from 24-30°C, with an 

average temperature of 26, ± 0.4°C (1 s.e.). All samples in this depth range are above expected 
minimum surface temperatures (based on Mg/Ca and organic proxy thermometry) for the past 2 
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million years (de Garidel-Thoron et al., 2005; Zhang et al., 2014). Consequently, the 
47
-based 

temperatures of these shallow (<10 mbsf) samples are consistent with limited diagenesis 

occurring over this depth range. From 10 to 900 mbsf, samples have 
47
-based temperatures that 

range from 18.5 to 27°C, with an average value of 22°C ± 0.3 (1 s.e.). Thus, 
47
-based 

temperatures over this depth range (10-900 mbsf), are generally cooler than would be expected 
(<24°C) based on independent constraints of Cenozoic equatorial surface water temperatures. At 

depths greater than 900 mbsf, 
47

-based temperatures return to elevated values and are on 

average 26 ± 0.7°C (1 s.e.). Thus, the pattern of 
47
 vs. depth and 

47
-based temperature vs. depth 

follow the predicted trajectory illustrated in the illustrative model for carbonates forming in 
warm surface waters and then undergoing diagenesis in cooler waters in deep-sea sediments (Fig. 
1C and E).   
 

5. Modeling site 807 
18

Ocarb and 47 data 

 

Application of the diagenetic model described in Section 3 to site 807 data requires prescribing 
the following, potentially time-varying parameters over the course of the Cenozoic: seawater 


18

O
fluid

 values; western Pacific surface-water temperatures; deep-ocean temperatures; the 
sedimentary geothermal gradient; sediment deposition rates; sediment compaction rates; and 
sediment recrystallization rates. We use as many independent estimates and constraints on these 
parameters as possible such that the single free parameter in our modeling efforts is sea-surface 
temperatures in the Pacific over the Cenozoic.  We now describe the bases of the prescribed 
parameters. A summary of these is given in Table 2.  
 

5.1 Site 807 model parameters 

 

5.1.1 Cenozoic history of ocean 
18

O values and deep-water temperatures 

 

We use the Cenozoic history of ocean 
18

O
fluid

 values and bottom-water temperatures from Lear et 

al. (2000). The temperatures are derived from Mg/Ca ratios of benthic foraminifera. 
18

O values 
of bottom waters are calculated using the formation temperatures derived from the Mg/Ca ratios 

and 
18

O
carb

 values of benthic foraminifera. We explored alternative histories of seawater 
18

O and 
deep-water temperature (Schrag et al., 1995; Cramer et al., 2011) and found differences were 
negligible and do not effect our conclusions. This is because, to first order, these histories are 
similar. 
 

5.1.2 Rates of sediment deposition and compaction 

 
Depositional rates were derived from the age model for site 807 given in Kroenke et al. (1991) 
and are about 22 meters/million years on average. Following Higgins and Schrag (2012) we 
assume constant depositional rates over the Cenozoic at site 807. Compaction rates were derived 
from the porosity data following methods outlined in Higgins and Schrag (2012).  
 

5.1.3 Recrystallization rates 
 
Recrystallization rates for site 807 are taken from Schrag et al. (1995) and are the same as those 

used in that study model the effects of diagenesis on 
18

O
carb

 data from this site. Specifically,   = 
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0.5 (%/myr),   = 7 (%/myr), and   = 9 (myr) [see equation (1)]. We comment on the chosen 
values for these recrystallization rates in Section A3.  
 

5.1.4 Sedimentary geothermal gradients 
 
We assume that the geothermal gradient is constant at 30°C/km. This is the average value used 
for the site in Schrag et al. (1995). We chose not to vary this parameter with time as done in 
Schrag et al. (1995) from 35 to 25 °C/km over the Cenozoic as that this had no noticeable effect 
on the results.  
 

5.1.5 Sedimentary pore-fluid 
18

O values 
 

The change in 
18
O

fluid
 values with depth is assumed to have a slope of 0 ‰/km (i.e., no change 

with depth). This differs from the assumed value of this slope of -3 ‰/km used in Schrag et al. 
(1995), a representative average for deep-sea sediments used in their model for all sites 
examined. The number we use here (0 ‰/km) is derived from direct measurements of pore fluid 


18

O
fluid

 values in Ontong Java plateau sediments (Elderfield et al., 1982) from the Deep-Sea 
Drilling Program sites 288 and 289. Specifically, samples from ranging 130-940 mbsf yield a 

slope of 0.4 ± 0.5 (1) ‰/km, and thus are indistinguishable at the 1 level from no change with 

depth. Elderfield et al. (1982) attributed the constancy of pore fluid 
18

O
 
values to the buffering 

effects of extensive recrystallization rates of carbonates on pore-fluid oxygen isotopic 
compositions.  
 

5.2 Modeling 47 and 
18

Ocarb values at site 807: the importance of sea-surface 

temperatures 
 
The temperature history of surface waters from the western equatorial Pacific is less well 
constrained. Some studies indicate that surface-water temperatures have remained roughly 
constant over the past 5 million years (Wara et al., 2005), while others have indicated a 
progressive cooling of about 2°C from about 6 million years to present (Zhang et al., 2014). We 
are unaware of any surface temperature reconstructions at this site (or nearby areas) going back 
more than the past 12 million years (Zhang et al., 2014). Thus, we treat surface temperature as 

the sole free parameter to explore in the model.  

 
Paleolatitude reconstructions of the Ontong Java plateau indicate that site 807 has been within 
10° of the equator for the past 50 million years (Chandler et al., 2012). It is generally thought 
that past equatorial temperatures were equal to or warmer on average than they are today, aside 
from glacial/interglacial variations (Pearson et al., 2001; Wara et al., 2005; Bijl et al., 2009; 
Kozdon et al., 2011; Zhang et al., 2014). This provides a first-order constraint on potential past 
surface seawater temperatures. 
 

Following previous work on 
18

O
carb

 data (Schrag et al., 1995; Schrag, 1999), we do not attempt 
to find a formal ‘best-fit’ surface-ocean temperature history for the Pacific Ocean based on the 


47
- and 

18
O

carb
-based temperatures. Instead use the data to explore the plausibility of previously 

suggested scenarios for surface ocean temperatures over the Cenozoic.  
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Following Schrag et al. (1995), we first assumed that surface water temperatures above site 807 
have remained constant over the Cenozoic. We allowed surface temperatures to range from 24-
30°C. This is range of past Pacific surface-temperature reconstructions over the past 12 million 
years (de Garidel-Thoron et al., 2005; Zhang et al., 2014; Tripati et al., 2014). Comparison of the 

model to the 
18

O
carb

 and 
47
 datasets (including previous published values) shows agreement for 


18

O
carb

 and 
47
 values and 

47
-based temperatures over the past ~40 million years (Fig. 8). 

However, for older samples (deeper than ~800 meters), both 
47
 values and 

18
O

carb
 values are 

consistently lower than predicted by the model. Schrag et al. (1995) and Schrag (1999) noted this 

disagreement as well in their site 807 
18
O

carb
 data as well as from other ODP sites for similarly 

aged samples. They proposed that elevated equatorial surface ocean temperatures of between 2-
6°C from 40 to 60 million years ago explains the disagreement.  
 

The deeper 
18

O
carb

 and 
47
 can be accommodated by assuming that oceans 65 million years ago 

were warmer than today at the equator. To illustrate the effects of warmer equatorial 
temperatures on the model, we assumed that surface equatorial Pacific waters cooled from 36-
27°C from 65 to 30 million years ago then remained constant at 27°C from 30 million years ago 

to today. This change causes the model to yield lower 
18

O
carb

 and 
47
 values and higher 

47
-based 

temperatures between 65-30 million years ago that visually better match the data (especially the 


47
 values) over this time (Fig. 9). Given that site 807 has been near the equator (within 10° 

paleolatitude) over Cenozoic (Chandler et al., 2012), any cooling can be attributed to changes in 
equatorial temperatures as opposed to migration of site 807 out of the equatorial ocean.  
 

Consequently the 
47
 data, in the context of the diagenetic model, is consistent with proposals for 

warmer equatorial surface temperatures in the Paleogene. For example, Eocene surface tropical 

temperatures are estimated to have been at least 32-33°C based on 
18

O
carb

 values of well 
preserved foraminifera (Pearson et al., 2001; Kozdon et al., 2011). Organic proxies based on 
archaeal lipid structures have indicated that equatorial surface water temperatures ranged from 
35-40°C in the Eocene (Bijl et al., 2009).  
 
We note, however, that there are alternative model parameterizations that are consistent with the 
data. For example, increased geothermal gradients or increased deep sedimentary 
recrystallization rates could also be called on to fit the deeper data (>800 mbsf) without invoking 
enhanced equatorial surface seawater temperatures. We discuss the choice of recrystallization 
rate in section A3. Importantly, the model parameters were chosen using independent 

constraints. Thus the success of the model to describe the 
47
 data provides supports not only that 

accuracy of the model itself, but also past reconstructions of seawater temperatures, ocean 
18
O

fluid
 

values, etc.  
 

6. Diagenesis and 47 values in shallow-water settings: an example from the Bahamas 
 

The 
47
 data presented above for Site 807 above provides independent evidence for the accuracy 

of the description of rates of recrystallization in deep sea sediment formulated in Richter and 
DePaolo (1987) and Richter and DePaolo (1988) and as specifically applied for Site 807 fro 
oxygen isotopes in Schrag et al. (1995). When the model is applied to shallow water sediments it 

indicates that potentially large shifts (>0.1‰) in 
47
 values could be observed as samples are 

buried a few kilometers in depth (Fig. 3C and D). 
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The key question is whether the model captures what actually occurs in natural shallow-water 
settings and especially whether diagenesis continues at depths greater than 1 km. To study this, 

we compared the model to a dataset from Winkelstern and Lohmann (2016), which reports 
47
 

values from calcite and dolomite samples taken from a drill core through carbonate shelf 
sediments from Andros Island, Bahamas spanning a depth range of 0 to 4500 meters We note 
that models of diagenesis similar to those used here to describe the exchange of oxygen isotopes 
between carbonate and pore fluids from 0 to 1100 mbsf in Bahama Bank ODP cores have been 
applied previously (Swart, 2000), supporting our model formulation for this system, but are not 
widely used in the interpretation of diagenesis in shallow-water systems.  
 
Based on information given in Winkelstern and Lohmann (2016), we took an average 
depositional rate of the system to be 33 m/myr and ran the model for 142 million years. Due to a 
lack of constraints, we assumed the same porosity vs. depth relationship as site 807. The porosity 
profile is important for modeling mass transfer between boxes via diffusion and compaction. We 
are not modeling diffusional processes here, so the precise porosity profile is unimportant for our 
results.  
 
We assumed constant sea-surface and sediment-water interface temperatures of 27°C, which is 
the average surface-water temperature in the area today (Winkelstern and Lohmann, 2016). We 
assumed a geothermal gradient of 30°C based on observations of ODP geothermal measurements 
through the Great Bahama Bank from sites 1003-1007. The temperature data was taken during 
coring and corrected for thermal effects associated with drilling (Pribnow et al., 2000). These 
geothermal gradients range from 14 to 37 °C/km, with an average of 29 °C/km. We use 30 
°C/km for simplicity. We note that this geotherm is higher than the range given in Winkelstern 
and Lohmann (2016) of 13-18 °C/km for the area, which is based on unpublished geothermal 
measurements from the Getty Corporation (Epstein and Clark, 2009). We prefer the ODP-based 
geothermal gradients as the data and methodology used to calculate them are traceable and were 
conducted during drilling with the explicit purpose of measuring geothermal gradients (Pribnow 
et al., 2000). 
 

Finally, we use the ‘combined high-temperature’ 
47
 vs. temperature equation of Defliese et al. 

(2015), which was generated in the same lab as the clumped-isotope measurements for the 

Bahamas samples. As discussed in section 2.2, we elect to use the 
47
 vs. temperature 

calibrations generated in the laboratory in which the 
47
 measurements were made. We note, 

though, that this calibration only extends from 5-70°C. Thus, when diagenesis occurs at 
temperatures above 70°C, we extrapolate the equation beyond the calibrated temperature range.  
 

For the reaction rate [see equation (1)] we use   = 6 (%/myr), and   = 5 (myr). These are the 
same values used in the conceptual deep-sea (section 3.1) and shallow-water (section 3.2) 
models and are typical values seen in deep-sea settings — as discussed above choice of these 
parameters is relatively unimportant for the model output as compared to the choice of values for 

 . We ran the model with three different constant background recrystallization rates [ — see 

equation (1)] of 0.1, 0.5, and 1 %/myr. These values are representative of those used in previous 

studies of recrystallization in deep-sea settings (Richter and Liang, 1993; Schrag et al., 1995; 
Schrag, 1999). 
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Running the model and comparing it to the data demonstrates that background recrystallization 
rates of 0.5 to 1% per million years show similar trajectories to what is seen in the Bahamas data 

(Fig. 10). Specifically, 
47
 values and 

47
-based temperatures do not change in a measureable 

way (i.e., beyond 0.01‰) over the first kilometer of burial —as discussed above, this lack of 

change (despite extensive recrystallization over this depth interval), is due to the similar 
47
 

values of the carbonate sediment and diagenetic carbonate end members over this depth. 
 

Beginning at about 1 km below the seafloor, noticeable decreases in 
47
 values are predicted for 

background reaction rates of 0.5 to 1 ‰/myr (Fig. 10). These changes track the general pattern 
observed in the data. We note that the geotherm used predicts that for depths below about 3 km, 

sedimentary temperatures will exceed 100°C. At this temperature, calcite 
47
 values are expected 

to begin changing on geological timescales due to solid-state isotope-exchange reactions. For 
example, the model of Stolper and Eiler (2015) predicts that a sample formed at 25°C and held at 

100°C for 100 million years will have 
47
-based temperatures to increase by 25°C. Importantly, 

the most deeply buried samples (below 3.2 km) are dolomite which, empirically, appear not to 
undergo measureable solid state reordering reactions in nature until burial temperatures exceed at 
least ~200 °C (Bonifacie et al., 2013; Lloyd et al., 2017). Thus, the deepest samples (all of which 
are dolomite) are unlikely to have been affected by solid-state isotope-exchange reactions and we 

consider it acceptable to model the change in 
47
 as solely due to diagenesis. However, future 

models of deeply buried carbonates should combine the kinetics of diagenetic recrystallization, 
i.e., dissolution-reprecipitation reactions, and solid-state reordering reactions into a single model 
framework — but this is beyond the scope of this study. Finally, we note that a geotherm of 15 
°C/km, which is the preferred average geotherm of Winkelstern and Lohmann (2016) is also 
consistent with the diagenetic model, but requires recrystallization rates of about 1 to 1.5 %/myr 
over the 0.5 to 1 %/myr for the 30 °C/km geotherm given in Figure 10.  
 
Ultimately, the model is successful in capturing the first order trends in the Bahamas dataset both 
for calcite and dolomite. This indicates that carbonate diagenesis in continental settings can be 
modeled to first order using the same framework as that previously applied to deep-sea settings 
and is applicable to both calcite and dolomites. This also indicates that dolomites undergo 
recrystallization reactions at depth as well. A key insight from the model is that diagenesis, 

though it may occur at all stages of burial in shallow-water settings, is unlikely to change 
47
 

values or 
47

-based temperatures measurably until burial depths exceed ~1 km. This assumes that 
rates of diagenesis are a monotonic function of sedimentary age. We note that we have not 
considered massive alteration events due, for example, to the transformation of aragonite to 
calcite or dolomitization in sediments (Higgins et al., 2018). The model also indicates that 

elevated 
47
 temperatures relative to formation temperatures that occur due to diagenesis do not 

necessarily represent a specific recrystallization temperature. Instead, the 
47
-based temperature 

can be controlled by the contribution of various carbonate phases (both original and diagenetic) 
that form over a range of temperatures and burial depths (e.g., Stolper and Eiler, 2016).  
 

7. Summary and Conclusions 

 
We have presented a model that quantifies the effects of dissolution-reprecipitation reactions on 

carbonate 
47
 values during diagenesis. The model indicates that for systems in which the initial 

burial temperatures differ substantially (10s of degrees) from the formation temperatures, 

noticeable changes in both 
18

O
carb

 and 
47
 values occur within the first kilometer of burial. We 
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verified the model using newly presented 
47
 values from ODP site 807 in the equatorial Pacific. 

The model and 
47
 data are consistent with previous studies on the effects of diagenesis on 

18
O

carb
 

values at this ODP site. This example demonstrates the ability of 
47
 values to test and validate 

models of diagenesis that utilize 
18
O

carb
 values. This is because any model of diagenesis that 

incorporates changes to 
18

O
carb

 necessarily predicts the changes in 
47
 values. Additionally, the 

modeling supports previous studies that indicate that equatorial temperatures in the Paleogene 
western Pacific surface ocean were warmer relative to today. 
 
We additionally explored the model’s predictions for shallow-water settings in which formation 
and the initial diagenesis occur at similar temperatures. Such settings are the dominant 
sedimentary systems preserved in Mesozoic and older rocks. The model predicts only minor 

changes in 
47
 values (~0.01‰) occur over the first kilometer of burial despite extensive amounts 

of recrystallization occurring. This is because differences between the temperature of formation 
and temperature of diagenesis over the first kilometer are generally too small to cause significant 

changes in 
47
 values. However, beyond 1000 mbsf, the influence of diagenesis on 

47
 becomes 

apparent and shifts in 
47
 clumped-isotope temperatures of >10°C are possible depending on the 

reaction rate. We demonstrated that these insights do apply to natural settings by comparing the 

model to published 
47
 data from shallow-water sedimentary carbonates (both calcite and 

dolomite) from the Bahamas. These data are consistent with the general trend of the model using 
reaction rates observed in deep-sea settings. 
 
If the model is widely applicable to diagenetic reactions in shallow-water settings, then it 

indicates that the prevalence of 
47
-based temperatures for ancient samples from 35-50°C may be 

due, at least in part, to the continual incorporation of carbonates formed during diagenesis at all 
stages of burial. This conclusion is consistent with the interpretation and quantitative model of 
phosphorite diagenesis based on clumped-isotope measurements (Stolper and Eiler, 2016). This 

interpretation of elevated 
47
-based temperatures is different from some interpretations of 

47
-

based temperatures of diagenetically modified carbonates as the singular temperature of 

reequilibration. In such interpretations, the 
47

-based temperatures are taken to indicate that mean 

temperature of diagenesis and are used in conjunction with 
18
O

carb
 values to calculate 

18
O

fluid
 

values of ancient pore fluids. Instead, the model presented here indicates that 
47
-based 

temperatures of diagenetically altered carbonates are the result of the precipitation and 
dissolution at all stages of burial and do not represent any single diagenetic event.  
 
It is important to note here that the model may only be appropriate for fine grained sediments as 
occurs in deep sea sediments formed from foraminifera and coccolithophores and platform 
carbonates dominantly derived from the precipitation of small carbonate particles in the water 
column (as in the Bahamas). The rates of diagenesis of buried fossils could vary as a function of 
the fossil material and differ from fine-grained carbonates. A potential future area of research 
would be to study differences in recrystallization rates in different fossils vs. micrite cements 
from a core or outcrop of a carbonate system in order to constrain how such diagenetic rates may 
differ. Regardless, the model present here provides the framework for evaluating the effects of 

diagenesis on 
47
 values and, potentially, to correct for them. Finally, a potential next step is to 

make a unified model of diagenesis and solid-state isotope-exchange reactions so that the effects 
of each can be understood together in the context of a sample’s burial history. 
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9. Tables 
Table 1: Sample information and isotopic measurements 

sample name size fraction (m) depth (m) n 
18

O (‰)
a
 1 s.e.

b
 

13
C (‰)

c
 1 s.e.

 b
 47 (‰)

d
 1 s.e.

 b
 

1H3 <20 3.75 3 29.57 0.02 0.63 0.03 0.711 0.013 

1H3 20-65 3.75 3 29.47 0.05 0.05 0.04 0.711 0.004 

1H3 65-250 3.75 3 29.67 0.07 0.56 0.06 0.704 0.010 

1H3 >250 3.75 3 29.98 0.05 1.16 0.02 0.715 0.007 

2H1 <20 8.15 3 29.85 0.04 0.57 0.03 0.713 0.008 

2H1 20-65 8.15 3 29.60 0.02 0.11 0.03 0.708 0.010 

2H1 65-250 8.15 3 29.54 0.05 0.21 0.09 0.716 0.004 

2H1 >250 8.15 3 29.96 0.04 1.47 0.02 0.697 0.004 

3H3 <20 19 2 29.87 0.00 0.25 0.04 0.721 0.007 

3H3 >250 19 2 30.08 0.01 0.65 0.00 0.727 0.019 

4H3 <20 28.5 2 30.18 0.02 -0.06 0.04 0.743 0.008 

4H3 >250 28.5 2 30.13 0.01 1.33 0.10 0.724 0.005 

7H6 <20 57 3 30.21 0.04 0.31 0.03 0.725 0.004 

7H6 20-65 57 3 29.96 0.05 0.17 0.04 0.701 0.008 

7H6 65-250 57 3 29.84 0.05 0.49 0.05 0.720 0.007 

7H6 >250 57 3 30.01 0.04 1.20 0.04 0.730 0.005 

8H3 <20 60 2 30.13 0.01 0.76 0.04 0.730 0.009 

8H3 >250 60 2 29.78 0.06 1.64 0.02 0.707 0.021 

9H3 <20 76 2 29.91 0.05 0.11 0.04 0.730 0.013 

9H3 >250 76 1 29.73 0.00 1.36 0.01 0.709 0.007 

12H <20 103 3 30.72 0.04 0.97 0.02 0.729 0.012 

12H 20-65 103 3 30.03 0.04 -0.18 0.02 0.731 0.009 

12H 65-250 103 3 29.83 0.05 0.60 0.01 0.706 0.011 

12H >250 103 3 29.77 0.05 0.98 0.19 0.709 0.005 

16H3 <20 143 2 30.47 0.02 0.78 0.03 0.716 0.024 

16H3 >250 143 2 30.37 0.03 0.84 0.02 0.712 0.002 

24H3 <20 218 2 30.69 0.02 1.36 0.02 0.725 0.008 

24H3 >250 218 2 30.44 0.13 1.49 0.05 0.724 0.019 

27H3 <20 248 2 31.19 0.05 1.49 0.04 0.726 0.019 

27H3 >250 248 2 31.02 0.06 1.56 0.02 0.715 0.017 

32x2 <20 295 2 30.62 0.03 1.36 0.03 0.739 0.007 

32x2 >250 295 2 30.65 0.05 1.34 0.04 0.732 0.007 

46-6 <20 435 3 30.77 0.08 2.26 0.03 0.709 0.002 

46-6 20-250 435 3 30.46 0.05 1.84 0.03 0.737 0.004 

46-6 >250 435 3 30.84 0.04 2.07 0.04 0.740 0.005 

55x5 <20 50 3 31.06 0.02 1.78 0.01 0.730 0.000 

55x5 20-250 50 3 30.52 0.02 1.10 0.01 0.714 0.003 

55x5 >250 50 3 31.03 0.01 1.54 0.00 0.722 0.010 

75-3 <20 712 3 30.68 0.02 1.85 0.13 0.723 0.006 

75-3 20-250 712 3 30.83 0.05 1.74 0.09 0.724 0.005 

75-3 >250 712 3 30.72 0.03 1.71 0.01 0.730 0.003 

02R-1 bulk 790 3 30.67 0.02 1.49 0.02 0.730 0.004 

25R-1 bulk 948 3 29.80 0.03 2.09 0.03 0.711 0.009 

52R2 bulk 1172 5 28.63 0.02 3.26 0.01 0.704 0.015 
a
Referenced to the VSMOW scale. Values corrected based on measured values of in-house standards. 

b
±1 standard error 

c
Referenced to the VPDB scale. Values corrected based on measured values of in-house standards. 

d
Given in the absolute reference frame (ARF) of Dennis et al. (2011). Values corrected based on measured values of in-house standards. 
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Table 2: Site 807 model assumptions 

parameter value basis study 

deep-ocean temperature varies with time from ~14 to 1°C Mg/Ca measurements of Lear et al. (2000) 

ocean 
18

O value varies with time from ~-1 to +0.5‰ 
benthic foraminifera 

18
Ocarb + 

Mg/Ca measurements Lear et al. (2000) 

deposition rate 22 m/myr site 807 age model Kroenke et al. (1991) 

compaction rate varies with sediment depth site 807 porosity data Higgins and Schrag (2012) 

geothermal gradient 30 °C/km estimate Schrag et al., (1995) 

pore-fluid 
18

O gradient 0 ‰/km measurement Elderfield et al. (1982) 

recrystallization rate rx = 0.005, rx = 0.07, rx = 9 estimate Schrag et al., (1995) 

ocean surface temperature free parameter - - 
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10. Figures 
 

 
Figure 1: Model examples of the effects of dissolution-reprecipitation reactions on carbonate 

18
O

carb
, 

47
, and 

47
-

based temperatures for an equatorial deep-sea setting. Surface temperatures are 30°C. Deep-water temperatures are 

0°C. The geothermal gradient is 30 °C/km. 
18

O
fluid

 value of seawater and the pore fluids are 0‰. Black lines are the 
bulk carbonate sediment values. Dashed blue lines are the values in the sediment column. In (B), (D), and (F) the 

change () between the measured and initial value of the bulk carbonate as a function of depth is given. See section 
3.1.4 for more details.  
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Figure 2: Model examples of the effects of dissolution-reprecipitation reactions on carbonate 

18
O

carb
, 

47
, and 

47
-

based temperatures for a high-latitude deep-sea setting. Surface and deep-sea temperatures are 0°C. The geothermal 

gradient is 30 °C/km. 
18

O
fluid

 value of seawater and the pore fluids are 0‰. Black lines are the bulk carbonate 

sediment values. Dashed blue lines are the values in the sediment column. In (B), (D), and (F) the change () 
between the measured and initial value of the bulk carbonate as a function of depth is given. See section 3.1.4 for 
more details.  
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Figure 3: Model examples of the effects of dissolution-reprecipitation reactions on carbonate 

47
, and 

47
-based 

temperatures for a shallow sedimentary example. Surface and deep-sea temperatures are 25C. The geothermal 

gradient is 25 °C/km. Dashed grey lines are the values in the sediment column. In (B), (D), the change () between 

the measured and initial value of the bulk carbonate as a function of depth is given. 
rx
 refers to the background 

reaction rate in the sedimentary column. See section 3.2.1 for more details 
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Figure 4: (A) Previously measured 

18
O

carb
 values of bulk sediment and picked foraminifera from site 807 (Corfield 

and Cartlidge, 1993; Prentice et al., 1993; Schrag et al., 1995) and nearby sites (Tripati et al., 2014). (B) 
18
O

carb
 

values for various size fractions of carbonate sediments measured in this study and compared to previous 
measurements.  
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Figure 5: Site 807 carbonate 

13
C values vs. those measured in other deep-sea cores for benthic foraminifera. Site 

807 data are derived dominantly from planktonic organisms. To compare the two records, we lowered site 807 
13
C 

values by 0.95‰, which is the current difference in 
13

C between surface and deep water values in the western 
Pacific Ocean (Kroopnick, 1985). Sediment age are derived from the age model given in Kroenke et al. (1991) 
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Figure 6: Clumped-isotope compositions and temperatures measured in this study and in Tripati et al. (2014). (A) 

47
 

values vs. depth. (B) Measured 
47
-based temperatures. Based on previous reconstructions of equatorial sea-surface 

temperatures (Pearson et al., 2001; de Garidel-Thoron et al., 2005; Bijl et al., 2009; Kozdon et al., 2011; Zhang et 
al., 2014), original formation temperatures of all samples are expected to have been >24°C. Therefore samples with 


47

-based temperatures <24°C have likely been altered by diagenesis. Typical ±1 s.e. error bars are given for the 
47
 

measurements and 
47

-based temperatures.  
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Figure 7: 

18
O

carb
 vs. 

47
 values. Lines for oxygen isotopic equilibrium between calcite and water for waters ranging 

from -1 to +1‰ (i.e., the ~range expected over the Cenozoic; Shackleton and Kennett, 1975; Miller et al., 1987; 

Adkins et al., 2002) are also given along with the best-fit line through the data. We note that points with 
47

 values 
below 0.705‰ typically plot below the trend line. This is because these points are dominantly derived from picked 

foraminifera that precipitated their calcite with 
18

O values lower than for measured bulk sediment (Tripati et al., 
2014).  
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Figure 8: Comparison of the diagenetic model to site 807 data. For the model, we have assumed constant sea-surface 
temperatures of 24, 27, and 30°C, which are the range of temperatures observed for equatorial sea-surface 
temperatures in the area of study. Agreement between the model and data is apparent for samples <40 Ma (<800 m).   
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Figure 9: Comparison of the diagenetic model to site 807 data. Here we have compared a model in which sea-
surface temperature are held at 27°C vs. a model where sea-surface temperatures cooled at a constant rate from 36 to 
27°C from 65 to 30 Ma and then remained constant at 27°C until the present. Cooling over the course of the 
Paleogene provides a better fit to the data from 60-40 Ma.  
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Figure 10: Comparison of the diagenetic model to data from a drill core through Andros Island, Bahamas. The data 
is from Winkelstern and Lohmann (2016). Models that use background recrystallization rates (a) of 0.5 to 1 ‰/myr 
follow the overall trends of the data. See section 7.2 for more details of the model. Error bars are 1 s.e. 
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11. Appendix 
 

A1: 
17

O corrections 

 

Schauer et al. (2016) and Daëron et al. (2016) recently showed that 
47
 values can vary subtly as 

a function of a sample’s 
13

C and 
18

O values based on the choice of the isotopic compositions 
(i.e., 

18
O/

16
O, 

17
O/

16
O and 

13
C/

12
C values) for VSMOW and VPDB. We used the values for these 

standards given in Santrock et al. (1985). Schauer et al. (2016) and Daëron et al. (2016) showed 

that the use of the Santrock et al. (1985) values can create a dependence of measured 
47
 values 

on a samples 
13

C and 
18

O values. This dependence is apparent when sample 
13

C values vary by 
10s of per mil. We use the Santrock et al. (1985) values here for the following reasons: (i) all 

previous 
47
 measurements made at Caltech, including calibrations to convert 

47
 values to 

formation temperatures, were made using the isotopic compositions of VSMOW and VDPB 

given in Santrock et al. (1985). (ii) Samples measured here vary by at most 3.5‰ in 
13

C from 
each other and 6.8‰ from the reference gas. Based on observations from Schauer et al. (2016), 

this difference in 
13

C could induce inaccuracies of at most 0.008‰ between samples using the 
Santrock et al. (1985) values. We consider such differences negligible for our purposes given 

that typical 
47
 standard errors range 0.01 to 0.02‰ (iii) Foraminifera from the Ontong Java 

Plateau measured in the Caltech laboratory using the same methodology as employed here 
(including a 90°C acid bath) and the Santrock et al. (1985) standard values, yield clumped 

isotope temperatures of 28.5°C ± 0.2 (1) within 2 error of the local temperature 29.2 °C ± 0.4 

(Tripati et al., 2010; Tripati et al., 2014). Tripati et al. (2010) also demonstrated that 
47

 values of 

deep-sea carbonates conform to the 
47
 vs. temperature calibration of Ghosh et al. (2006). 

Additionally, Daëron et al. (2016) demonstrated that choice of 
18

O/
16

O, 
17

O/
16

O and 
13
C/

12
C for 

VSMOW and VPDB does not appear to affect the temperature dependence (i.e., the slope) of 
47 

vs. 1/T
2
 calibrations. Because the Ghosh et al. (2006) calibration yields accurate 

47
-based 

temperatures for modern samples in our study area with known formations temperatures and the  

temperature dependence of 
47
 vs. 1/T

2
 calibrations is apparently independent of the choice of 

VSMOW and VPDB values., we consider our use of the Santrock et al. (1985) value to be 
appropriate for this study. 
 

A2: 47 values and end-member mixing 

 

Here we further justify our assumption that we can treat 
47

 values of mixtures of multiple 

carbonate components as the weighted averaged (by weight percent) of the 
47
 value of the end 

members. This assumption is valid when the 
13
C and 

18
O values of the end members do not 

differ sufficiently to induce significant non-linear mixing effects (Eiler and Schauble, 2004; 
Defliese and Lohmann, 2015).  
 
The isotopic composition of the diagenetic and sedimentary carbonate components can differ due 
to temperature-dependent equilibrium isotope effects. For example, carbonate isotopically 

equilibrated with water at 50°C is ~11‰ lower in 
18

O than carbonate equilibrated with the same 
water at -2° (Kim and O'Neil, 1997; Watkins et al., 2013). -2°C represents the approximate 
minimum water temperatures seen in the oceans today while 50°C is a typical temperature 1 km 
below the seafloor. In contrast, the difference between carbonate vs. dissolved inorganic 

carbonate 
13

C
 
values of experimentally precipitated carbonates from 10-40°C (the total 
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experimental range) shows no dependence temperature (Romanek et al., 1992; Zeebe and Wolf-
Gladrow, 2001). Based on this, mixing of carbonates formed in isotopic equilibrium with pore 
fluids (both carbon and oxygen isotope equilibrium) at -2 and 50°C generates a maximum 

mixing nonlinearity for 
47
 of 0.0005‰ relative to assuming 

47
 values mix linearly as a function 

of the weight percent of each component. This non-linearity is significantly less than the 

precision of typical 
47
 measurements (~0.01‰ 1) and thus can be ignored. 

 
The above calculation assumes that the dissolved inorganic carbon in the fluid is in equilibrium 
with the carbonate at a given depth and that the two are identical. This assumption can fail if 

significant amounts of organic carbon, which is lower in 
13

C than marine carbonates (typically 
by ~25‰ over the past 200 million years; e.g., Falkowski et al., 2005) is incorporated into the 
dissolved inorganic carbon pool an then precipitated as diagenetic carbonate. Importantly, at site 
807, typical organic carbon weight percents (by dry weight) are <0.1‰ (Stax and Stein, 1993) 
compared to >90‰ for carbonate (Kroenke et al., 1991). Thus, as there are orders of magnitude 
more carbon in carbonates that in organic carbon in this system, we consider it acceptable to 
ignore the influence of respiration on the dissolved inorganic pool. Additionally, as discussed in 

section 4.3 and in Figure A2, changes in site 807 
13

C
carb

 with time mirror changes in global 
records of carbonates over the Cenozoic (Zachos et al., 2001). This further supports our 

argument that 
13

C values of diagenetic carbonates are similar to the bulk sediment being 
dissolved. 
 

A3: Details on recrystallization rates 

 
In our modeling of site 807 data above, we used the recrystallization rates given by Schrag et al. 
(1995) for site 807. Fantle and DePaolo (2006) provide different and lower recrystallization rates 
for site 807 based on carbonate and pore fluid Sr concentrations and isotopic compositions from 

0 to 800 mbsf. Their model has no background recrystallization rate such that   = 0 %/myr vs. 
0.5 %/myr in Schrag et al. (1995). They did invoke an exponential decaying reaction rate with 

time with a maximum recrystallization rate (
rx
; 3.5 %/myr) half that given in Schrag et al. 

(1995), though with a longer e-folding time (
rx
) of 11 myr vs. 9 myr in Schrag et al. (1995). 

Over the first 1000 km, this leads to 2x less recrystallization (40%) than the model of Schrag et 
al. (1995; 90%). In a follow-up study by the same authors (Fantle and DePaolo, 2007), the age 

dependent recrystallization rates of Fantle and DePaolo (2006) (the   term), was determined to 
be too low for sediments less than 2.5 million years old (<50 mbsf). This determination was 
based on modeling of calcium concentrations and isotopic compositions of pore fluids and solids. 
Fantle and DePaolo (2007) suggested initial recrystallization rates are 30-40 %/myr over this 
depth range (top 50 meters), increasing total recrystallization over the first kilometer of burial up 
to ~60%. 
 
The remaining difference in total recrystallization rate between the two studies is that Fantle and 

DePaolo (2006) chose   to be 0 %/myr while Schrag et al. (1995) chose 
rx
 to be 0.005 %/myr. 

Significant recrystallization is known from the physical properties and petrography of sediments 
below 500 mbsf. Specifically, chalk begins to convert to limestone beginning at ~850 mbsf 
(Borre and Fabricius, 1998). Chalk is distinguished from limestone based on how easy it is to 
mechanically deform. Specifically chalk can be deformed with a metal spatula while limestone is 
hard enough that a saw is required to cut it (Schlanger et al., 1973). This difference in material 
properties is the result of the presence of carbonate cements in limestone that bind grains 
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together via the filling and loss of porosity. These cements are chemical precipitates and 
necessitate the contribution of carbonate formed in the sediments to the solid phase. The 
importance of the chalk-limestone transition for measured recrystallization rates was noted by 
Higgins and Schrag (2012) for site 807. They required extensive (6%/myr) recrystallization to 
occur during the conversion of chalk to limestone at depths from 1100-1300 m in order to fit 
carbonate and pore-fluid magnesium concentrations and isotopic compositions. Fantle and 
DePaolo (2006) did not need to consider this as they focused on diagenesis only from 0-800 
mbsf. 
 
We chose to use the recrystallization rates of Schrag et al. (1995) as these capture the extensive 
recrystallization in the top few hundred meters of the sediment column, consistent with the 
findings of Fantle and DePaolo (2007), and capture the extensive recrystallization at depths 
below 800 mbsf during the chalk-limestone transition. 
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Table A1: 
13

C and 
18

O accuracy and precision of standards and site 807 samples. 
 

  n
a
 

uncorrected
b
 


18

Othis study (‰)
c


1
d
 

uncorrected 

corrected
e
  


18

Othis study (‰)
c


1
d
 

corrected 


18
OCaltech (‰)

c,f


uncorrected
b
 


13

Cthis study (‰)
g


1
d
 

corrected 

corrected
e
  


13

Cthis study (‰)
g


1
d
 

corrected 


13

C,Caltech 

(‰)
f,g


Carrara 

marble 
43 28.72 0.28 28.84 0.07 28.83 2.29 0.11 2.32 0.04 2.33 

TV01 41 21.95 0.2 22.02 0.05 22.03 2.50 0.11 2.53 0.05 2.53 

site 807 

averages
h
 

116 - 0.16 - 0.06 - - 0.09 - 0.07 - 

 
a
Number of samples measured 

b
Measured values before correction based on differences between values standards in an analytical session vs. the long-term average 

c
Referenced to VSMOW 

d
1 standard deviation 

e
Measured values after correction based on differences between values of standards in an analytical session vs. the long-term average 

f
Average, long-term value at Caltech 

g
Referenced to the VPDB scale 

h
Only the pooled standard deviation for the precision of all site 807 measurements is given. No average is given as all site 807 samples are used for this analysis. 

 

 

Table A2: 47 accuracy and precision of standards and site 807 samples.  
 

  n
a
 47, this study (‰)

b
 1  47, Caltech (‰)

b,d
 47, Dennis et al. 

(2011) (‰)
b,e

 

Carrara Marble 43 0.409 0.011 0.401 0.403 

TV01 41 0.729 0.016 0.724 - 

site 807 
averages

f
 

116 - 0.012 - - 

a
Number of samples measured 

b
Given in the absolute reference frame (ARF) of Dennis et al. (2011) 

c
1 standard deviation 

d
Average, long-term value at Caltech 

e
This value (in the absolute reference frame) is derived from Dennis et al. (2011) by taking the average value for the reported Carrara in-house marbles and increasing the Harvard, Johns Hopkins, and 
Caltech values by 0.011‰ to account for the use of a 90°C clumped-isotope acid-digestion fractionation of 0.092‰ used in this study instead of 0.081‰ as was used in that study. 
f
Only the pooled standard deviation for the precision of all site 807 measurements is given. No average is given as all site 807 samples are used for this analysis. 
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Figure A1: Location of Ocean Drilling Project site 807 as well as the Bahama Banks drill site discussed in 
Winkelstern and Lohmann (2016). Map modified from Wessel et al. (2013). 
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Figure A2: 

47
 vs. temperature calibration used to simulate diagenesis at temperatures beyond 

50°C, which is the highest temperature used in the Ghosh et al. (2006) calibration. This 
calibration was used solely in the model output presented in Figure 10. The equation is               


47
 = 0.00173 x (10

6
/T

2
)

2
 + 0.0203 x 10

6
/T

2
 + 0.261 where T is the temperature in Kelvin. Data 

used in this calibration comes only from measurement made at the Caltech laboratories (Ghosh et 
al., 2006; Ghosh et al., 2007; Came et al., 2007; Guo et al., 2009; Tripati et al., 2010; Eagle et al., 
2010; Thiagarajan et al., 2011; Dennis et al., 2011; Stolper and Eiler, 2015; Eagle et al., 2015; 
Spooner et al., 2016; Bonifacie et al., 2017).  
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Figure A3: Comparison of changes in various model parameters including the geothermal 

gradient, depositional rate, and reaction rate on the effects of diagenesis on 
18

O, 
47
 values, and 


47
-based temperatures The baseline model is the same as that given in Figure 2 (see section 

3.1.4. When reaction rates are doubled (red line), we double 
rx
, 

rx
, and 

rx
. 
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