19 research outputs found

    Case report: Long-term management of occlusion after surgical-orthodontic treatment for a patient with drug-induced open bite developed after the onset of schizophrenia

    Get PDF
    BackgroundSchizophrenia is a major mental disorder, with an estimated incidence of 1%. Since they are sensitive to sensory changes, orthodontic treatment to move teeth should be avoided as aggressively as possible in these patients because of strong concerns about the possibility of causing adverse psychological effects, thus there are few reports on orthodontic treatment for schizophrenia patients. We report a case of severe open bite caused by medication after the onset of schizophrenia, even though the patient’s occlusion had been stable for a long time after surgical orthodontic treatment. Medication control and the use of a minimally invasive orthodontic appliance improved the occlusion without adversely affecting the patient’s mental health.CaseA 22-year-old woman presented to the clinic with a chief complaint of an anterior open bite. Intraoral findings showed an overbite (vertical overlap of the incisor teeth) of −3.0 mm and an overjet (horizontal overlap of the incisor teeth) of −0.5 mm. The preoperative orthodontic treatment included bilateral extraction of the maxillary first premolars. Subsequently, orthognathic surgery was performed to achieve a harmonized skeletal relationship and occlusion. Occlusion was stable for 3 years after surgery. However, 10 years after surgery, the patient returned to the clinic complaining of an anterior open bite (overbite = −4.0 mm). Six years prior to the return, the patient was diagnosed with schizophrenia. We thought that ignoring the patient’s strong desire to treat her open bite might also cause psychological problems; therefore, in addition to medication control, we treated her using a minimally invasive removable orthodontic appliance (retainer with tongue crib). Her anterior open bite improved (overbite, +1.0 mm) to within the normal range.ConclusionIn this case, medication control was thought to be essential to improve her drug-induced open bite. However, minimally invasive orthodontic treatment, such as the use of a removable appliance, might be helpful in promoting her mental stability as well as for improving occlusion. Careful support is required to obtain information about the patient’s mental state and medications through close cooperation with psychiatrists

    BAMBI Regulates Angiogenesis and Endothelial Homeostasis through Modulation of Alternative TGFβ Signaling

    Get PDF
    BACKGROUND: BAMBI is a type I TGFβ receptor antagonist, whose in vivo function remains unclear, as BAMBI(-/-) mice lack an obvious phenotype. METHODOLOGY/PRINCIPAL FINDINGS: Identifying BAMBI's functions requires identification of cell-specific expression of BAMBI. By immunohistology we found BAMBI expression restricted to endothelial cells and by electron microscopy BAMBI(-/-) mice showed prominent and swollen endothelial cells in myocardial and glomerular capillaries. In endothelial cells over-expression of BAMBI reduced, whereas knock-down enhanced capillary growth and migration in response to TGFβ. In vivo angiogenesis was enhanced in matrigel implants and in glomerular hypertrophy after unilateral nephrectomy in BAMBI(-/-) compared to BAMBI(+/+) mice consistent with an endothelial phenotype for BAMBI(-/-) mice. BAMBI's mechanism of action in endothelial cells was examined by canonical and alternative TGFβ signaling in HUVEC with over-expression or knock-down of BAMBI. BAMBI knockdown enhanced basal and TGFβ stimulated SMAD1/5 and ERK1/2 phosphorylation, while over-expression prevented both. CONCLUSIONS/SIGNIFICANCE: Thus we provide a first description of a vascular phenotype for BAMBI(-/-) mice, and provide in vitro and in vivo evidence that BAMBI contributes to endothelial and vascular homeostasis. Further, we demonstrate that in endothelial cells BAMBI interferes with alternative TGFβ signaling, most likely through the ALK 1 receptor, which may explain the phenotype observed in BAMBI(-/-) mice. This newly described role for BAMBI in regulating endothelial function has potential implications for understanding and treating vascular disease and tumor neo-angiogenesis

    Comprehending the three-dimensional mandibular morphology of facial asymmetry patients with mandibular prognathism

    No full text
    Abstract Background The purpose of this study was to elucidate the factors that cause facial asymmetry by comparing the characteristics of the mandibular morphology in patients with mandibular prognathism with or without facial asymmetry using three-dimensional computed tomography (3D-CT). Methods We studied 28 mandibular prognathism patients whose menton deviated by ≥ 4 mm from the midline (FA group, n = 14) and those with a < 4-mm deviation (NA group, n = 14). DICOM data from multislice CT images were reconstructed and analysed using 3D image analysing software. Mandibular structures were assessed via linear, angular, or volumetric measurements and analysed statistically. Results The lengths of the ramal and body components and condylar volume in the FA group were significantly greater on the nondeviated side than those on the deviated side. The mandibular body length of the nondeviated side in the FA group was significantly longer than that of the NA group. Other components of the FA group did not significantly differ from those of the NA group. Conclusions Imbalances in the sizes of the ramal and body components as well as the increased body length of the nondeviated side in the FA group compared with that of the NA group may contribute to facial asymmetry in patients with mandibular prognathism

    Snail regulates p21(WAF/CIP1) expression in cooperation with E2A and Twist.

    No full text
    Snail, a zinc-finger transcriptional repressor, is essential for mesoderm and neural crest cell formation and epithelial-mesenchymal transition. The basic helix-loop-helix transcription factors E2A and Twist have been linked with Snail during embryonic development. In this study, we examined the role of Snail in cellular differentiation through regulation of p21(WAF/CIP1) expression. A reporter assay with the p21 promoter demonstrated that Snail inhibited expression of p21 induced by E2A. Co-expression of Snail with Twist showed additive inhibitory effects. Deletion mutants of the p21 promoter revealed that sequences between -270 and -264, which formed a complex with unidentified nuclear factor(s), were critical for E2A and Snail function. The E2A-dependent expression of the endogenous p21 gene was also inhibited by Snail

    Examination of craniofacial morphology in Japanese patients with congenitally missing teeth: a cross-sectional study

    No full text
    Abstract Background The purpose of this cross-sectional study was to investigate the effects of congenitally missing teeth on craniofacial morphology and to characterize the features of maxillofacial morphology of oligodontia patients associated with individual skeletal maturity by assessment with the cervical vertebrae maturation (CVM) method. Methods A total of 106 non-syndromic Japanese patients with congenitally missing teeth (except for third molars) were selected and categorized into two groups according to the severity of congenitally missing teeth (hypodontia group, 1–5 missing teeth [n = 56]; oligodontia group, ≥ 6 missing teeth [n = 50]). A control group included orthodontic patients without either skeletal disharmony or congenitally missing teeth (n = 63). Subjects in oligodontia and control groups were further categorized into two subgroups on the basis of cervical stage (CS): stage I (CS2 or 3; n = 27 and n = 31, respectively) and stage II (CS4 or above; n = 23 and n = 32, respectively). Lateral cephalograms were analyzed by using eight angular and eight linear measurements. Z-scores were formulated on the basis of age and sex and were matched to the Japanese norm. Tukey tests and t tests were performed. Results Compared with the control group, the hypodontia group had significantly smaller U1 to FH plane angle and A-B plane angle; U1-L1 was significantly larger. The oligodontia group had significantly smaller ANS-Me, L1 to mandibular plane angle, and Ptm-A; U1-L1 was significantly larger. At stage I, the oligodontia group had significantly smaller ANS-Me, gonial angle, and ANS-U1. At stage II, the oligodontia group had significantly smaller U1 to FH plane angle, L1 to mandibular plane angle, Ptm-A, and Go-Pog; it also had significantly larger U1-L1. Conclusions The present study suggested that skeletal patterns differ along with the number of congenitally missing teeth and that, in oligodontia patients, skeletal patterns differ before and after growth peak. It is important to consider the skeletal characteristics of tooth agenesis patients when designing a treatment plan

    Functional analysis of natural mutations in two TWIST protein motifs.

    No full text
    The basic helix-loop-helix protein Twist, a transcriptional repressor, is essential for embryogenesis in both invertebrates and vertebrates. Haploinsufficiency of the human TWIST1 gene, which causes the craniosynostosis disorder Saethre-Chotzen syndrome (SCS), is related to failure to repress transcription of CDKN1A (which encodes p21/WAF1/CIP1), promoting osteoblast differentiation. We have examined the functional significance of natural TWIST1 variants present in craniosynostosis patients and in their healthy relatives. Both deletion and duplication variants of the glycine-rich tract Gly5AlaGly5 inhibited E2A (E12/E47)-dependent transcription of CDKN1A to a similar degree as wild-type protein, indicating that the length of this glycine tract is not critical for efficient transcriptional repression. We also evaluated a newly identified heterozygous TWIST1 variant (c.115C&gt;G, encoding p.Arg39Gly), located within a putative nuclear localization signal (NLS), that was present in a child with mild SCS and her clinically unaffected father and grandmother. Unlike wild-type protein, this mutant required cotransfected E12 to localize to the nucleus, indicating that the NLS, including amino acid 39, is essential for nuclear localization; inhibition of E2A-dependent transcription of CDKN1A occurred normally. This analysis further dissects the structure-function relationships of TWIST and corroborates with phenotypic observations of disease expressivity

    Distinct functionalities of bone morphogenetic protein antagonists during fracture healing in mice

    No full text
    The bone morphogenetic protein (BMP) family of growth factors plays critical roles in bone formation. BMPs are regulated at multiple levels by various BMP antagonists. This study investigated how BMP antagonists are integrated into the cascade of events of bone formation during fracture healing. Forty mice underwent a controlled femur fracture; tissue samples at the fracture site were harvested at days 1, 3, 7, 14 and 21 after fracture, for quantification of the expression of BMPs and BMP antagonists. During fracture healing, BMP-2, -4 and -7 were up-regulated, but BMPR-1A and BMPR-2 showed reduced expression after day 14. Among BMP antagonists, the expressions of PRDC, SOST, Smad7, GREM1 and CERBERUS were generally down-regulated during fracture healing. In contrast, Noggin was significantly up-regulated in the first week after fracture; 7 days after fracture, other BMP antagonists, including DAN, CHRD, Smad6 and BAMBI, also showed significantly increased expression. In conclusion, this study indicates that BMP antagonists can be divided into two functional groups in relation to fracture healing: (1) those whose suppression may be essential for the initiation of osteogenesis; (2) those that are upregulated and may function in the remodeling of newly formed bone
    corecore