47 research outputs found
Scoring Method for Early Prediction of Neonatal Chronic Lung Disease Using Modified Respiratory Parameters
In our previous study, we have demonstrated that peak inspiratory pressure over birth weight (PIP/kg) and mean airway pressure over birth weight (MAP/kg) were more significant risk factors for the development of neonatal chronic lung disease (CLD) than PIP and MAP. We aimed to develop a scoring method using the modified respiratory variables (SMUMRV) to predict CLD at early postnatal period. From 1997 to 1999, a retrospective review was performed for 197 infants <1,500 g for the development of the SMUMRV based on statistical analysis. From 2000 to 2001, calculated scores on day 4, 7 and 10 of life were obtained prospectively for 107 infants <1,500 g. Predictive values and the area under the receiver operator characteristic curve (AUC) were determined and compared with the result of the previous regression model. Gestational age, birth weight, 5 min Apgar score, PIP/kg at 12 hr of age, fractional inspired oxygen (FiO2), MAP/kg, modified oxygenation index and ventilatory mode were selected as parameters of SMUMRV. No significant differences of AUCs were found between the SMUMRV and the Yoder model. It is likely that our scoring method provides reliable values for predicting the development of CLD in very low birth weight infants
Elective high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome: an individual patient data meta-analysis
<p>Abstract</p> <p>Background</p> <p>Despite the considerable amount of evidence from randomized controlled trials and meta-analyses, uncertainty remains regarding the efficacy and safety of high-frequency oscillatory ventilation as compared to conventional ventilation in the early treatment of respiratory distress syndrome in preterm infants. This results in a wide variation in the clinical use of high-frequency oscillatory ventilation for this indication throughout the world. The reasons are an unexplained heterogeneity between trial results and a number of unanswered, clinically important questions. Do infants with different risk profiles respond differently to high-frequency oscillatory ventilation? How does the ventilation strategy affect outcomes? Does the delay – either from birth or from the moment of intubation – to the start of high-frequency oscillation modify the effect of the intervention? Instead of doing new trials, those questions can be addressed by re-analyzing the individual patient data from the existing randomized controlled trials.</p> <p>Methods/Design</p> <p>A systematic review with meta-analysis based on individual patient data. This involves the central collection, validation and re-analysis of the original individual data from each infant included in each randomized controlled trial addressing this question.</p> <p>The study objective is to estimate the effect of high-frequency oscillatory ventilation on the risk for the combined outcome of death or bronchopulmonary dysplasia or a severe adverse neurological event. In addition, it will explore whether the effect of high-frequency oscillatory ventilation differs by the infant's risk profile, defined by gestational age, intrauterine growth restriction, severity of lung disease at birth and whether or not corticosteroids were given to the mother prior to delivery. Finally, it will explore the importance of effect modifying factors such as the ventilator device, ventilation strategy and the delay to the start of high-frequency ventilation.</p> <p>Discussion</p> <p>An international collaborative group, the PreVILIG Collaboration (Prevention of Ventilator Induced Lung Injury Group), has been formed with the investigators of the original randomized trials to conduct this systematic review. In the field of neonatology, individual patient data meta-analysis has not been used previously. Final results are expected to be available by the end of 2009.</p