586 research outputs found

    Supermagnetosonic jets behind a collisionless quasi-parallel shock

    Full text link
    The downstream region of a collisionless quasi-parallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multi-spacecraft measurements of this type of supermagnetosonic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasi-parallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasi-parallel shocks in many plasma environments.Comment: accepted to Phys. Rev. Lett. (Nov 5, 2009

    In Situ Observations of a Magnetosheath High-Speed Jet Triggering Magnetopause Reconnection

    Get PDF
    Magnetosheath high‐speed jets—localized dynamic pressure enhancements typically of ∼1 Earth radius in size—impact the dayside magnetopause several times per hour. Here we present the first in situ measurements suggesting that such an impact triggered magnetopause reconnection. We use observations from the five Time History of Events and Macroscale Interactions during Substorms spacecraft in a string‐of‐pearls configuration on 7 August 2007. The spacecraft recorded magnetopause in‐and‐out motion during an impact of a magnetosheath jet (VN∼−300 km/s along the magnetopause normal direction). There was no evidence for reconnection for the preimpact crossing, yet three probes observed reconnection after the impact. We infer that the jet impact compressed the originally thick (60–70 di), high magnetic shear (140–160° magnetopause until it was thin enough for reconnection to occur. Magnetosheath high‐speed jets could therefore act as a driver for bursty dayside reconnection

    Radiative Decays of the Upsilon(1S) to a Pair of Charged Hadrons

    Full text link
    Using data obtained with the CLEO~III detector, running at the Cornell Electron Storage Ring (CESR), we report on a new study of exclusive radiative Upsilon(1S) decays into the final states gamma pi^+ pi^-, gamma K^+ K^-, and gamma p pbar.. We present branching ratio measurements for the decay modes Upsilon(1S) to gamma f_2(1270), Upsilon(1S) to gamma f_2'(1525), and Upsilon(1S) to gamma K^+K^-; helicity production ratios for f_2(1270) and f_2'(1525); upper limits for the decay Upsilon(1S) to gamma f_J(2200), with f_J(2220) to pi^+ pi^-, K^+ K^-, p pbar; and an upper limit for the decay Upsilon(1S) to gamma X(1860), with X(1860) to gamma p pbar.Comment: 17 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2005/, Submitted to PR
    corecore