122 research outputs found

    Cryo-EM structure of the Rous sarcoma virus octameric cleaved synaptic complex intasome

    Get PDF
    Despite conserved catalytic integration mechanisms, retroviral intasomes composed of integrase (IN) and viral DNA possess diverse structures with variable numbers of IN subunits. To investigate intasome assembly mechanisms, we employed the Rous sarcoma virus (RSV) IN dimer that assembles a precursor tetrameric structure in transit to the mature octameric intasome. We determined the structure of RSV octameric intasome stabilized by a HIV-1 IN strand transfer inhibitor using single particle cryo-electron microscopy. The structure revealed significant flexibility of the two non-catalytic distal IN dimers along with previously unrecognized movement of the conserved intasome core, suggesting ordered conformational transitions between intermediates that may be important to capture the target DNA. Single amino acid substitutions within the IN C-terminal domain affected intasome assembly and function in vitro and infectivity of pseudotyped RSV virions. Unexpectedly, 17 C-terminal amino acids of IN were dispensable for virus infection despite regulating the transition of the tetrameric intasome to the octameric form in vitro. We speculate that this region may regulate the binding of highly flexible distal IN dimers to the intasome core to form the octameric complex. Our studies reveal key steps in the assembly of RSV intasomes

    Extragalactic Science, Cosmology and Galactic Archaeology with the Subaru Prime Focus Spectrograph (PFS)

    Full text link
    The Subaru Prime Focus Spectrograph (PFS) is a massively-multiplexed fiber-fed optical and near-infrared 3-arm spectrograph (N_fiber=2400, 380<lambda<1260nm, 1.3 degree diameter FoV), offering unique opportunities in survey astronomy. Here we summarize the science case feasible for a survey of Subaru 300 nights. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 (Gpc/h)^3 in the redshift range 0.8<z<2.4. In each of 6 redshift bins, the cosmological distances will be measured to 3% precision via BAO, and redshift-space distortions will be used to constrain structure growth to 6% precision. In the GA program, radial velocities and chemical abundances of stars in the Milky Way and M31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 10^6 stars in the Galactic thick-disk, halo and tidal streams as faint as V~22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple alpha-element abundances and more precise velocities for Galactic stars, elucidating the detailed chemo-dynamical structure and evolution of each of the main stellar components of the Milky Way Galaxy and of its dwarf spheroidal galaxies. For the extragalactic program, our simulations suggest the wide avelength range will be powerful in probing the galaxy population and its clustering over a wide redshift range. We propose to conduct a color-selected survey of 1<z<2 galaxies and AGN over 16 deg^2 to J~23.4, yielding a fair sample of galaxies with stellar masses above ~10^{10}Ms at z~2. A two-tiered survey of higher redshift LBGs and LAEs will quantify the properties of early systems close to the reionization epoch.Comment: This document describes the scientific program and requirements for the Subaru Prime Focus Spectrograph (PFS) project. Made significant revision based on studies for the Preliminary Design Review (PRD) held in Feb 2013. The higher-resolution paper file is available from http://member.ipmu.jp/masahiro.takada/pfs_astroph_rv.pd

    Prospective cohort study of febrile neutropenia in breast cancer patients administered with neoadjuvant and adjuvant chemotherapies: CSPOR-BC FN study

    Get PDF
    Background As Asians are more vulnerable to febrile neutropenia (FN) than Caucasians, evaluations of FN incidence and risk factors in Asians are important for the appropriate use of primary pegfilgrastim (PEG-G). Patients and methods Japanese breast cancer patients receiving standard adjuvant chemotherapies were prospectively enrolled in multicenter institutions from August 2015 to July 2017. FN was evaluated from 2 treatment policies: true FN (T-FN): ≄37.5 °C, grade 4 neutropenia, mandatory hospital visit (visiting); surrogate FN (S-FN): ≄37.5 °C, oral antibiotic, no mandatory visit (non-visiting). PEG-G was used at the physicians’ discretion. The primary endpoint was FN incidence during all cycles. Multivariate logistic regression analysis was performed to identify T-FN risk factors. Results Of 1005 enrolled patients, 980 women treated with FEC, E(A)C, and TC were analyzed. The FN incidence proportions in all patients were 22.5%, 27.5%, and 33.9% for FEC, E(A)C, and TC, respectively. Those of T-FN were 27.7%, 22.4%, and 36.6%; those of S-FN were 17.3%, 32.4%, and 31.5% with more frequent primary PEG-G usage. The relative dose intensity (RDI) of the 3 regimens was ≄0.85 in both groups. In the analysis of risk factors, TC (odds ratio = 2.67), age ≄ 65 years (2.24), and pretreatment absolute neutrophil count (ANC)/1000 Όl (0.8) remained significant. Conclusions FN incidences were above 20% in the 3 regimens, with TC showing the highest. RDI was maintained at a high level in both visiting and non-visiting groups. Patient-related risk factors were age and pretreatment ANC

    Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography

    Get PDF
    Acknowledgements This work was supported by the Chief Scientist Office, Scottish Government, Grant COV/ABN/20/01 (Elasmogen, Ltd.), a 2018 Prostate Cancer Foundation Challenge Award (AML), a 2013 Prostate Cancer Foundation Young Investigator Award (AML), NCI R01s CA237272, CA233562, and CA245922 (AML). WEM was supported by the NIH T32 HL007741 and JMT by the NIH T32 AI055433. JSM was funded by NIGMS R01 GM088790. HA was funded by NIGMS R35 GM118047 and NCI P01 CA234228. X-ray diffraction data were collected at the Northeastern Collaborative Access Team beamlines, which are funded by the US National Institutes of Health (NIGMS P30 GM124165). The Pilatus 6M detector on 24-ID-C beamline is funded by a NIH-ORIP HEI grant (S10 RR029205). We thank the Marco Pravetoni lab for providing training and access to the OctetRED96e for BLI experiments.Peer reviewedPublisher PD

    Interferon regulatory factor-4 activates IL-2 and IL-4 promoters in cooperation with c-Rel.

    Get PDF
    Interferon regulatory factor (IRF)-4 is a member of the IRF transcription factor family, whose expression is primarily restricted to lymphoid and myeloid cells. In T-cells, IRF-4 expression is induced by T-cell receptor (TCR) cross-linking or treatment with phorbol-12-myristate-13-acetate (PMA)/Ionomycin, and IRF-4 is thought to be a critical factor for various functions of T-cells. To elucidate the IRF-4 functions in human adult T-cell leukemia virus type 1 (HTLV-1)-infected T-cells, which constitutively express IRF-4, we isolated IRF-4-binding proteins from T-cells, using a tandem affinity purification (TAP)-mass spectrometry strategy. Fourteen proteins were identified in the IRF-4-binding complex, including endogenous IRF-4 and the nuclear factor-kappaB (NF-ÎșB) family member, c-Rel. The specific association of IRF-4 with c-Rel was confirmed by immunoprecipitation experiments, and IRF-4 was shown to enhance the c-Rel-dependent binding and activation of the interleukin-4 (IL-4) promoter region. We also demonstrated that IL-2 production was also enhanced by exogenously-expressed IRF-4 and c-Rel in the presence of P/I, in T-cells, and that the optimal IL-2 and IL-4 productions in vivo was IRF-4-dependent using IRF-4-/- mice. These data provide molecular evidence to support the clinical observation that elevated expression of c-Rel and IRF-4 is associated with the prognosis in adult T-cell leukemia/lymphoma (ATLL) patients, and present possible targets for future gene therapy

    Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2014 for treatment of colorectal cancer

    Full text link

    A Case of Fixed Drug Eruption due to Phenobarbital Used as a Premedication for Myelography.

    No full text

    Current Progress in the Structural and Biochemical Characterization of Proteins Involved in the Assembly of Lipopolysaccharide

    No full text
    The lipid component of the outer leaflet of the outer membrane of Gram-negative bacteria is primarily composed of the glycolipid lipopolysaccharide (LPS), which serves to form a protective barrier against hydrophobic toxins and many antibiotics. LPS is comprised of three regions: the lipid A membrane anchor, the nonrepeating core oligosaccharide, and the repeating O-antigen polysaccharide. The lipid A portion is also referred to as endotoxin as its overstimulation of the toll-like receptor 4 during systemic infection precipitates potentially fatal septic shock. Because of the importance of LPS for the viability and virulence of human pathogens, understanding how LPS is synthesized and transported to the outer leaflet of the outer membrane is important for developing novel antibiotics to combat resistant Gram-negative strains. The following review describes the current state of our understanding of the proteins responsible for the synthesis and transport of LPS with an emphasis on the contribution of protein structures to our understanding of their functions. Because the lipid A portion of LPS is relatively well conserved, a detailed description of the biosynthetic enzymes in the Raetz pathway of lipid A synthesis is provided. Conversely, less well-conserved biosynthetic enzymes later in LPS synthesis are described primarily to demonstrate conserved principles of LPS synthesis. Finally, the conserved LPS transport systems are described in detail

    A CMOS Spiking Neural Network Circuit with Symmetric/Asymmetric STDP Function

    Get PDF
    In this paper, we propose an analog CMOS circuit which achieves spiking neural networks with spike-timing dependent synaptic plasticity (STDP). In particular, we propose a STDP circuit with symmetric function for the first time, and also we demonstrate associative memory operation in a Hopfield-type feedback network with STDP learning. In our spiking neuron model, analog information expressing processing results is given by the relative timing of spike firing events. It is well known that a biological neuron changes its synaptic weights by STDP, which provides learning rules depending on relative timing between asynchronous spikes. Therefore, STDP can be used for spiking neural systems with learning function. The measurement results of fabricated chips using TSMC 0.25 ”m CMOS process technology demonstrate that our spiking neuron circuit can construct feedback networks and update synaptic weights based on relative timing between asynchronous spikes by a symmetric or an asymmetric STDP circuits
    • 

    corecore