325 research outputs found

    IV. DRIFTING SNOW AT SYOWA STATION AND MIZUHO CAMP IN 1971-1972

    Get PDF

    Developing a methodology for estimating the drag in front-crawl swimming at various velocities

    Get PDF
    We aimed to develop a new method for evaluating the drag in front-crawl swimming at various velocities and at full stroke. In this study, we introduce the basic principle and apparatus for the new method, which estimates the drag in swimming using measured values of residual thrust (MRT). Furthermore, we applied the MRT to evaluate the active drag (Da) and compared it with the passive drag (Dp) measured for the same swimmers. Da was estimated in five-stages for velocities ranging from 1.0 to 1.4 m s−1; Dp was measured at flow velocities ranging from 0.9 to 1.5 m s−1 at intervals of 0.1 m s−1. The variability in the values of Da at MRT was also investigated for two swimmers. According to the results, Da (Da = 32.3 v3.3, N = 30, R2 = 0.90) was larger than Dp (Dp = 23.5 v2.0, N = 42, R2 = 0.89) and the variability in Da for the two swimmers was 6.5% and 3.0%. MRT can be used to evaluate Da at various velocities and is special in that it can be applied to various swimming styles. Therefore, the evaluation of drag in swimming using MRT is expected to play a role in establishing the fundamental data for swimming

    Mechanical anisotropy of deep ice core samples by uniaxial compression tests (scientific paper)

    Get PDF
    Mechanical anisotropy of ice core samples has been observed in various uniaxial compression tests. The c-axis orientation distribution is the primary influence on the mechanical behavior of ice cores. A strong single-maximum fabric pattern is observed in the deep parts of the ice sheet. In this region, polycrystalline ice is very hard along the vertical axis; however, it easily shears along the horizontal plane. Thus, by acquiring the distribution of c-axis orientations throughout the ice sheet, the mechanical anisotropy of ice sheet flow behavior can be understood. Analysis of fabric measurements on the Dye 3, GRIP, and Dome F ice cores suggests that the c-axis orientation distribution depends primarily on vertical strain. Therefore, if the ice thickness at some point in the ice sheet is known, it should be possible to predict the distribution of c-axis orientations at that depth. Uniaxial compression tests were carried out along various directions of the Dye 3, GRIP, and Dome F ice cores. A contour map of mechanical anisotropy was then made to relate the compression direction to the vertical strain. This clarified the flow enhancement factor in every compression direction at a given vertical strain

    A new heterozygous compound mutation in the CTSA gene in galactosialidosis

    Get PDF
    Galactosialidosis is an autosomal recessive lysosomal storage disease caused by the combined deficiency of lysosomal β-galactosidase and neuraminidase due to a defect in the protective protein/cathepsin A. Patients present with various clinical manifestations and are classified into three types according to the age of onset: the early infantile type, the late infantile type, and the juvenile/adult type. We report a Japanese female case of juvenile/adult type galactosialidosis. Clinically, she presented with short stature, coarse facies, angiokeratoma, remarkable action myoclonus, and cerebellar ataxia. The patient was diagnosed with galactosialidosis with confirmation of impaired β-galactosidase and neuraminidase function in cultured skin fibroblasts. Sanger sequencing for CTSA identified a compound heterozygous mutation consisting of NM_00308.3(CTSA):c.746 + 3A>G and c.655-1G>A. Additional analysis of her mother’s DNA sequence indicated that the former mutation originated from her mother, and therefore the latter was estimated to be from the father or was a de novo mutation. Both mutations are considered pathogenic owing to possible splicing abnormalities. One of them (c.655-1G>A) is novel because it has never been reported previously

    Dating of the Dome Fuji, Antarctica deep ice core (scientific paper)

    Get PDF
    The Antarctic ice sheet preserves paleo-climate information in the form of physical and chemical stratigraphy. A deep ice core was continuously drilled down to a depth of 2,503 m at Dome Fuji station, East Dronning Maud Land, Antarctica, during the 1993-97 JARE inland operations. Oxygen isotope measurements were conducted on 7 to 50 cm-long ice core samples selected from the entire core depth. A time scale for the Dome Fuji core is calculated from past accumulation rates and an ice flow model. Past accumulation rates were converted from oxygen isotope values by using an empirical equation obtained in the Dome Fuji area. A steady-state flow model was preciously developed for a time scale calculation of the Summit ice core, Greenland. Using reference depth points from volcanic signals and annual layer thickness values measured on the Dome Fuji core allows for tuning of the calculated time scale. A depth-age profile was obtained for the past 320 kyr. The obtained paleo-temperature profile shows the characteristics of the past three glacial and interglacial periods. The power spectrum of ƒÂ18O change over an interval of 320 kyr reveals three dominant cycles. The paleo-temperature profile coincides quite well with the Vostok ice core data in general but not in detail, suggesting that further studies are needed both for chronological investigations and a multi-factor, cross-correlation analysis between deep ice cores for climatological understanding

    Effect of leg kick on active drag in front-crawl swimming: Comparison of whole stroke and arms-only stroke during front-crawl and the streamlined position

    Get PDF
    The purpose of this study was to examine the effect of leg kick on the resistance force in front-crawl swimming. The active drag in front-crawl swimming with and without leg motion was evaluated using measured values of residual thrust (MRT method) and compared with the passive drag of the streamlined position (SP) for the same swimmers. Seven male competitive swimmers participated in this study, and the testing was conducted in a swimming flume. Each swimmer performed front-crawl under two conditions: using arms and legs (whole stroke: WS) and using arms only (arms-only stroke: AS). Active drag and passive drag were measured at swimming velocities of 1.1 and 1.3 m s−1 using load cells connected to the swimmer via wires. We calculated a drag coefficient to compare the resistances of the WS, AS and SP at each velocity. For both the WS and AS at both swimming velocities, active drag coefficient was found to be about 1.6–1.9 times larger than that in passive conditions. In contrast, although leg movement did not cause a difference in drag coefficient for front-crawl swimming, there was a large effect size (d = 1.43) at 1.3 m s−1. Therefore, although upper and lower limb movements increase resistance compared to the passive condition, the effect of leg kick on drag may depend on swimming velocity
    corecore