1,593 research outputs found

    Density Matrix Renormalization Group Study of the Haldane Phase in Random One-Dimensional Antiferromagnets

    Get PDF
    It is conjectured that the Haldane phase of the S=1 antiferromagnetic Heisenberg chain and the S=1/2S=1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain is stable against any strength of randomness, because of imposed breakdown of translational symmetry. This conjecture is confirmed by the density matrix renormalization group calculation of the string order parameter and the energy gap distribution.Comment: 4 Pages, 7 figures; Considerable revisions are made in abstract and main text. Final accepted versio

    Critical Properties of the transition between the Haldane phase and the large-D phase of the spin-1/2 ferromagnetic-antiferromagnetic Heisenberg chain with on-site anisotropy"

    Full text link
    We analytically study the ground-state quantum phase transition between the Haldane phase and the large-DD (LD) phase of the S=1/2S=1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain with on-site anisotropy. We transform this model into a generalized version of the alternating antiferromagnetic Heisenberg model with anisotropy. In the transformed model, the competition between the transverse and longitudinal bond alternations yields the Haldane-LD transition. Using the bosonization method, we show that the critical exponents vary continuously on the Haldane-LD boundary. Our scaling relations between critical exponents very well explains the numerical results by Hida.Comment: text 12 pages (Plain TeX), LaTeX sourse files of a table and a figure on reques

    Exotic vs. conventional scaling and universality in a disordered bilayer quantum Heisenberg antiferromagnet

    Get PDF
    We present large-scale Monte-Carlo simulations of a two-dimensional (2d) bilayer quantum Heisenberg antiferromagnet with random dimer dilution. In contrast to the exotic scaling scenarios found in many other random quantum systems, the quantum phase transition in this system is characterized by a finite-disorder fixed point with power-law scaling. After accounting for strong corrections to scaling, characterized by a leading irrelevant exponent of \omega = 0.48, we find universal, i.e., disorder-independent, critical exponents z=1.310(6) and \nu=1.16(3). We discuss the consequences of these findings and suggest new experiments.Comment: 4 pages, 5eps figures included, final version as publishe

    Quasiperiodic Hubbard chains

    Full text link
    Low energy properties of half-filled Fibonacci Hubbard models are studied by weak coupling renormalization group and density matrix renormalization group method. In the case of diagonal modulation, weak Coulomb repulsion is irrelevant and the system behaves as a free Fibonacci chain, while for strong Coulomb repulsion, the charge sector is a Mott insulator and the spin sector behaves as a uniform Heisenberg antiferromagnetic chain. The off-diagonal modulation always drives the charge sector to a Mott insulator and the spin sector to a Fibonacci antiferromagnetic Heisenberg chain.Comment: 4 pages, 4 figures; Final version to appear in Phys. Rev. Let

    Excitation Spectrum of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain:

    Full text link
    The natural explanation of the excitation spectrum of the spin-1 antiferromagnetic Heisenberg chain is given from the viewpoint of the spin-1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain. The energy spectrum of the latter is calculated with fixed momentum kk by numerical diagonalization of finite size systems. It consists of a branch of propagating triplet pair (triplet wave) and the continuum of multiple triplet waves for weak ferromagnetic coupling. As the ferromagnetic coupling increases, the triplet wave branch is absorbed in the continuum for small kk, reproducing the characteristics of the spin-1 antiferromagnetic Heisenberg chain.Comment: 12 Pages REVTEX, Postscript file for the figures included. SKPH-94-C00

    IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1(+)B220(+) NK cells

    Get PDF
    ArticleBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 369(4): 1139-1143 (2008)journal articl

    Quantum Monte Carlo Study on Magnetization Processes

    Full text link
    A quantum Monte Carlo method combining update of the loop algorithm with the global flip of the world line is proposed as an efficient method to study the magnetization process in an external field, which has been difficult because of inefficiency of the update of the total magnetization. The method is demonstrated in the one dimensional antiferromagnetic Heisenberg model and the trimer model. We attempted various other Monte Carlo algorithms to study systems in the external field and compared their efficiency.Comment: 5 pages, 9 figures; added references for section 1, corrected typo

    The antiferromagnetic order in an F-AF random alternating quantum spin chain : (CH_3)_2 CHNH_3 Cu(Cl_x Br_{1-x})_3

    Full text link
    A possibility of the uniform antiferromagnetic order is pointed out in an S=1/2 ferromagnetic (F) - antiferromagnetic (AF) random alternating Heisenberg quantum spin chain compound: (CH_3)_2 CHNH_3 Cu(Cl_x Br_{1-x})_3. The system possesses the bond alternation of strong random bonds that take +/- 2J and weak uniform AF bonds of -J. In the pure concentration limits, the model reduces to the AF-AF alternation chain at x=0 and to the F-AF alternation chain at x=1. The nonequilibrium relaxation of large-scale quantum Monte Carlo simulations exhibits critical behaviors of the uniform AF order in the intermediate concentration region, which explains the experimental observation of the magnetic phase transition. The present results suggest that the uniform AF order may survive even in the presence of the randomly located ferromagnetic bonds.Comment: 4 pages, 3 figure

    Ground State and Magnetization Process of the Mixture of Bond-Alternating and Uniform S=1/2 Antiferromagnetic Heisenberg Chains

    Get PDF
    The mixture of bond-alternating and uniform S=1/2 antiferromagnetic Heisenberg chains is investigated by the density matrix renormalization group method. The ground state magnetization curve is calculated and the exchange parameters are determined by fitting to the experimentally measured magnetization curve of \CuCl2x_{2x}Br2(1x)_{2(1-x)}(γ\gamma-pic)2_2. The low field behavior of the magnetization curve and low temperature behavior of the magnetic susceptibility are found to be sensitive to whether the bond-alternation pattern (parity) is fixed all over the sample or randomly distributed. The both quantities are compatible with the numerical results for the random parity model.Comment: 5 pages, 7 figures. Final and enlarged version accepted for publication in J. Phys. Soc. Jp

    Density Matrix Renormalization Group Study of the S=1/2 Anisotropic Antiferromagnetic Heisenberg Chains with Quasiperiodic Exchange Modulation

    Full text link
    The low energy behavior of the S=1/2 antiferromagnetic XY-like XXZ chains with precious mean quasiperiodic exchange modulation is studied by the density matrix renormalization group method. It is found that the energy gap of the chain with length N scales as exp(cNω)\exp (-cN^{\omega}) with nonuniversal exponent ω\omega if the Ising component of the exhange coupling is antiferromagnetic. This behavior is expected to be the characteristic feature of the quantum spin chains with relevant aperiodicity. This is in contrast to the XY chain for which the precious mean exchange modulation is marginal and the gap scales as NzN^{-z}. On the contrary, it is also verified that the energy gap scales as N1N^{-1} if the Ising component of the exhange coupling is ferromagnetic. Our results are not only consistent with the recent bosonization analysis of Vidal, Mouhanna and Giamarchi but also clarify the nature of the strong coupling regime which is inaccesssible by the bosonization approach.Comment: 8 pages, 15 figures, 1 table; Proceedings of the workshop 'Frontiers in Magnetism', Kyoto, Oct. 199
    corecore