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Exotic Versus Conventional Scaling and Universality in a Disordered Bilayer Quantum
Heisenberg Antiferromagnet
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We present Monte Carlo simulations of a two-dimensional bilayer quantum Heisenberg antiferro-
magnet with random dimer dilution. In contrast with exotic scaling scenarios found in other random
quantum systems, the quantum phase transition in this system is characterized by a finite-disorder fixed
point with power-law scaling. After accounting for corrections to scaling, with a leading irrelevant
exponent of ! � 0:48, we find universal critical exponents z � 1:310�6� and � � 1:16�3�. We discuss
the consequences of these findings and suggest new experiments.
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Quantum phase transitions (QPT) under the influence
of quenched disorder are a topic of great current interest.
Experimental examples range from localized [1] and
itinerant [2] quantum magnets to heavy-fermion com-
pounds [3], high-temperature superconductors [4], and
to metal-insulator [5] and superconductor-insulator
transitions [6]. These systems display rich new physics
but many are still poorly understood. In the context of
classical phase transitions, the interplay between disorder
and critical fluctuations has a long history. Harris [7]
derived a criterion for the stability of a critical point
against disorder: if the correlation length exponent �
fulfills the inequality � > 2=d, where d is the spatial
dimensionality, the critical behavior is not influenced by
weak disorder. If a clean critical point violates the Harris
criterion, the generic result of introducing disorder is a
new (finite-disorder) critical point with power-law scal-
ing and new critical exponents which fulfill the Harris
criterion [8].

At QPTs, order-parameter fluctuations in space and
time must be considered. Quenched disorder is perfectly
correlated in the time direction. As a result, disorder
effects at QPTs are generically stronger than at classical
transitions. Prominent consequences are the infinite-
randomness critical points in 1D random spin chains [9]
and in 1D [10] and 2D [11,12] random quantum Ising
models. At these critical points, the dynamical scaling is
activated, i.e., the correlation time �	 and correlation
length � obey ln�	 � �
. (At conventional critical points,
this relation is a power law, �	 � �z, with a universal
dynamical exponent z). In itinerant electron systems,
the effects of impurities can be even more dramatic. For
Ising symmetry, the interplay of quenched disorder and
Landau damping of the order-parameter fluctuations
completely destroys the sharp QPT by smearing [13].
Further exotic phenomena include nonuniversal, contin-
uously varying exponents observed in the Griffiths region
associated with a QPT [10,11,14] or at certain impurity

QPTs [15]. On the other hand, the stable low-energy (as
opposed to critical) fixed point of random Heisenberg
models in d � 2 has been shown to be conventional
[16]. Preliminary results [12] for the critical point in
these models suggest that the infinite-randomness fixed
point is unstable, but no definite conclusion on the fate of
the transition has been reached. These results lead to the
general question whether all QPTs in presence of
quenched disorder are unconventional.

In this Letter, we provide a ‘‘proof of principle’’ that
this is not the case: the QPT of a dimer-diluted spin-1=2
bilayer quantum Heisenberg antiferromagnet is shown to
exhibit a conventional finite-disorder critical point with
power-law dynamical scaling and universal critical ex-
ponents. After accounting for corrections to scaling char-
acterized by an irrelevant exponent ! � 0:48, we find the
asymptotic dynamical and correlation length exponents
to be z � 1:310�6� and � � 1:16�3� (fulfilling the Harris
criterion � > 2=d � 1 [7,8]).

Our starting point is a bilayer quantum Heisenberg
antiferromagnet as depicted in the inset of Fig. 1. The
spins in each 2D layer interact via nearest neighbor
exchange Jk, and the interplane coupling is J?. The clean
version of this model has been studied extensively [17,18].
For J? 	 Jk, neighboring spins from the two layers form
singlets, and the ground state is paramagnetic. In contrast,
for Jk 	 J? the system develops Néel order. Both phases
are separated by a QPT at J?=Jk � 2:525. Random dis-
order is introduced by removing pairs (dimers) of adja-
cent spins, one from each layer. The Hamiltonian of the
model with dimer dilution is:

H � Jk
X
hi;ji
a�1;2

�i�jŜi;a � Ŝj;a  J?
X
i

�iŜi;1 � Ŝi;2; (1)

and �i � 0 (�i � 1) with probability p (1� p).
The phase diagram of the dimer-diluted bilayer

Heisenberg model has been studied by Sandvik [19]
and Vajk and Greven [20]; see Fig. 1. For small J?,
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magnetic order survives up to the percolation threshold
pp � 0:4072, and a multicritical point exists at p � pp
and J?=Jk � 0:16. We focus on the generic transition at
0< p< pp, driven by J?, where the results of
Refs. [19,20] are inconclusive.

To determine the critical behavior at the QPT effec-
tively, we proceed by mapping the quantum Hamiltonian
(1) onto a classical model. First we note that the low-
energy properties of bilayer quantum antiferromagnets
are represented by a �2 1�-dimensional O(3) quantum
rotor model [21] with the rotor coordinate n̂i correspond-
ing to Ŝi;1 � Ŝi;2 and the angular momentum L̂i repre-
senting Ŝi;1  Ŝi;2 (see, e.g., chapter five of Ref. [22]). This
quantum rotor model in turn is equivalent to a 3D clas-
sical Heisenberg model with the disorder perfectly corre-
lated in imaginary time direction, as can be easily seen
from a path integral representation of the partition func-
tion. Thus, our classical Hamiltonian reads:

H � K
X
hi;ji;	

�i�jni;	 � nj;	  K
X
i;	

�ini;	 � ni;	1; (2)

where ni;	 is an O(3) unit vector. The coupling constant
�K of the classical model is related to the ratio Jk=J? of
the quantum model. Here, � � 1=T where T is an effec-
tive ‘‘classical’’ temperature, not equal to the real tem-
perature which is zero. We set K � 1 and drive the
classical system through the transition by tuning the
classical temperature T.

As an aside, we note that dimer dilution in the quantum
model (1) does not introduce random Berry phases be-
cause the Berry phase contributions from the two spins of
each unit cell cancel [21,22]. In contrast, for site dilution,
the physics changes completely: the random Berry phases
(which have no classical analogue) are equivalent to
impurity-induced moments [23], and those become

weakly coupled via bulk excitations. Thus, for all p <
pp, the ground state shows long-range order, independent
of J?=Jk. This effect is absent for dimer dilution, and
both phases of the clean system survive for small p [24].

The classical model (2) is studied by Monte Carlo
simulations using the efficient Wolff cluster algorithm
[25,26].We investigate linear sizes up to L � 120 in space
direction and L	 � 384 in imaginary time for impurity
concentrations p � 1

8 , 1
5 , 2

7 , and 1
3 . The results are aver-

aged over 103–104 disorder realizations. Each sample is
equilibrated using 100 Monte Carlo sweeps (spin-flips per
site). For large dilutions, p � 2

7 and 1
3 , we perform both

Wolff and Metropolis sweeps to equilibrate small dan-
gling clusters. During the measurement period of another
100–200 sweeps we calculate magnetization, susceptibil-
ity, specific heat, and correlation functions.

A quantity particularly suitable to locate the critical
point and to extract high precision values for the expo-
nents z and � is the Binder ratio:

gav �

�
1�

hjMj4i

3hjMj2i2

�
av
; (3)

where M �
P
i;	ni:	, �. . .�av denotes the disorder average,

and h. . .i denotes the Monte Carlo average for each sam-
ple. This quantity has scale dimension 0. Thus, its finite-
size scaling form is given by

gav � ~gC�tL1=�; L	=Lz� or (4)

gav � ~gA�tL
1=�; log�L	�=L


� (5)

for conventional scaling or for activated scaling, respec-
tively. Two important characteristics follow: (i) For fixed
L, gav has a peak as a function of L	. The peak position
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FIG. 2. Upper panel: Binder ratio gav as a function of L	 for
various L (p � 1

5 ). Lower panel: Power-law scaling plot
gav=gmax

av vs L	=Lmax
	 . Inset: Activated scaling plot gav=gmax

av
vs y � log�L	�= log�L
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FIG. 1. Phase diagram [20] of the diluted bilayer Heisenberg
antiferromagnet, as function of J?=Jk and dilution p. The
dashed line is the percolation threshold, the open dot is the
multicritical point of Refs. [19,20]. The arrow indicates the
QPT studied here. Inset: the model: quantum spins (arrows)
reside on the two parallel square lattices. The spins in each
plane interact with the coupling strength Jk. Interplane cou-
pling is J?. Dilution is done by removing dimers.
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Lmax
	 marks the optimal sample shape, where the ratio
L	=L roughly behaves like the corresponding ratio of the
correlation lengths in time and space directions, �	=�. At
the critical temperature Tc, the peak value gmax

av is inde-
pendent of L. Thus, for power-law scaling, plotting gav vs
L	=Lmax

	 at Tc should collapse the data, without the need
for a value of z. In contrast, for activated scaling, the gav
data should collapse when plotted as a function of
log�L	�= log�L

max
	 �. (ii) For samples of the optimal shape

(L	 � Lmax
	 ), plots of gav vs temperature for different L

cross at Tc. Based on these two characteristics, we use a
simple iterative procedure to determine both the optimal
shapes and the location of the critical point.

We now turn to our results. To distinguish between
activated and power-law dynamical scaling we perform
a series of calculations at the critical temperature. The
upper panel of Fig. 2 shows the Binder ratio gav as
a function of L	 for various L � 5 . . . 100 and dilution
p � 1

5 at T � Tc � 1:1955. The statistical error of gav is
below 0.1% for the smaller sizes and not more than 0.2%
for the largest systems. As expected at Tc, the maximum
Binder ratio for each of the curves does not depend on L.
To test the conventional power-law scaling form, Eq. (4),
we plot gav=gmax

av as a function of L	=Lmax
	 in the lower

panel of Fig. 2. The data scale extremely well, giving
statistical errors of Lmax

	 in the range between 0.3% and
1%. For comparison, the inset shows a plot of gav as a
function of log�L	�= log�Lmax

	 � corresponding to Eq. (5).
The data clearly do not scale, which rules out the acti-
vated scaling scenario. The results for the other impurity
concentrations p � 1

8 , 2
7 , 1

3 are completely analogous.
Having established conventional power-law dynamical

scaling, we proceed to determine the dynamical exponent
z. In Fig. 3, we plot Lmax

	 vs L for all four dilutions p. The
curves show significant deviations from pure power-law
behavior which can be attributed to corrections to scaling
due to irrelevant operators. In such a situation, a direct
power-law fit of the data will only yield effective expo-
nents. To find the true asymptotic exponents we take the
leading correction to scaling into account by using the
ansatz Lmax

	 �L� � aLz�1 bL�!1� with universal

(dilution-independent) exponents z and !1 but dilution-
dependent a and b. A combined fit of all four curves gives
z � 1:310�6� and !1 � 0:48�3� where the number in
brackets is the standard deviation of the last given digit.
The fit is of high quality ( 2 � 0:7) and robust against
removing complete data sets or removing points from the
lower or upper end of each set. We thus conclude that the
asymptotic dynamical exponent z is indeed universal.
(Note that the leading corrections to scaling vanish
very close to p � 2

7 ; the curvature of the Lmax
	 �L� curves

in Fig. 3 is opposite above and below this concentration.)
To find the correlation length exponent �, we perform

simulations in the vicinity of Tc for samples with the
optimal shape (L	 � Lmax

	 ) to keep the second argument
of the scaling function (4) constant. Figure 4 shows a
scaling plot of gav vs T for impurity concentration p � 1

5 .
Again, the data scale very well, but since the scaling
function lacks the characteristic maximum, the error of
the resulting scaling factor xL is somewhat larger
(1 . . . 2%) than that of Lmax

	 . The same quality of scaling
was achieved for the other dilutions. Figure 5 shows the
scaling factor xL vs L for all four data sets. A combined fit
to the ansatz xL � cL1=��1 dL�!2� where � and !2 are
universal gives � � 1:16�3� and !2 � 0:5�1�. As above,
the fit is robust and of high quality ( 2 � 1:2).
Importantly, as expected for the true asymptotic expo-
nent, � fulfills the Harris criterion [7], � > 2=d � 1. Note
that both irrelevant exponents !1 and !2 agree within
their error bars, suggesting that the same irrelevant op-
erator controls the leading corrections to scaling for both
z and �.

We have also calculated total magnetization and sus-
ceptibility. The corresponding exponents �=� � 0:56�5�
and "=� � 2:15�10� have slightly larger error bars than z
and �. Nonetheless, they fulfill the hyperscaling relation
2� " � �d z�� which is another argument for our
results being asymptotic rather than effective exponents.

In summary, we have performed Monte Carlo simula-
tions of a 3D classical Heisenberg model with linear
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FIG. 3. Lmax
	 =L vs L for four disorder concentrations p � 1

8 ,
1
5 , 2

7 , and 1
3 . Solid lines: fit to Lmax

	 � aLz�1 bL�!1 � with z �
1:310�6� and !1 � 0:48�3�.
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impurities which is in the same universality class as the
dimer-diluted bilayer quantum Heisenberg antiferromag-
net. We have shown that the QPT in this system is con-
trolled by a conventional, finite-disorder critical point
with power-law dynamical scaling and universal expo-
nents. (Note that the Ising version of our model, the
diluted 2D random transverse Ising model, shows an
infinite-randomness critical point [11,27].)

Let us compare our results to previous work. The multi-
critical point at p � pp and J?=Jk � 0:16, found in
Refs. [19,20], has a dynamical exponent z � 1:3. Within
the error bars, this value coincides with the one found
here for the generic p < pp transition. We see no a priori
reason for this coincidence; so far it is unclear whether or
not it is accidental. Vajk and Greven [20] also quote
exponents for p < pc. At dilution p � 0:25 they find z �
1:07 and � � 0:89, different from our results. However, as
the authors of Ref. [20] point out, a value of � < 1 violates
the Harris criterion, indicating that it represents an ef-
fective rather than an asymptotic exponent. It would also
be useful to compare our findings with analytical results.
To the best of our knowledge, the only quantitative result
is a resummation of the 2-loop �-expansion [28]. The
predicted exponents significantly differ from ours, but
they also violate the Harris criterion, casting doubt on
their validity.

Finally, we comment on experiments. If chemical dop-
ing replaces magnetic by nonmagnetic ions in an anti-
ferromagnet, e.g., Cu by Zn in YBa2Cu3O6, the case of
site rather than dimer dilution is realized. The most
promising way to achieve bond dilution is the introduc-
tion of strong antiferromagnetic intradimer bonds at ran-
dom locations. Thus we propose to study magnetic
transitions in bond-disordered systems; those transitions
can be expected to be in the same universality class as the
one studied here. One candidate material—albeit 3D— is
�Tl;K�CuCl3 [29] under pressure; interesting quasi-2D
compounds are SrCu2�BO3�2 or BaCuSi2O6, where suit-
able dopants remain to be found.

We acknowledge partial support from the University of
Missouri Research Board, from the NSF under Grant
No. DMR-0339147, and from the DFG Center for
Functional Nanostructures Karlsruhe.
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