117 research outputs found
Neural population representation hypothesis of visual flow and its illusory after effect in the brain: psychophysics, neurophysiology and computational approaches
The neural representation of motion aftereffects induced by various visual flows (translational, rotational, motion-in-depth, and translational transparent flows) was studied under the hypothesis that the imbalances in discharge activities would occur in favor in the direction opposite to the adapting stimulation in the monkey MST cells (cells in the medial superior temporal area) which can discriminate the mode (i.e., translational, rotational, or motion-in-depth) of the given flow. In single-unit recording experiments conducted on anaesthetized monkeys, we found that the rate of spontaneous discharge and the sensitivity to a test stimulus moving in the preferred direction decreased after receiving an adapting stimulation moving in the preferred direction, whereas they increased after receiving an adapting stimulation moving in the null direction. To consistently explain the bidirectional perception of a transparent visual flow and its unidirectional motion aftereffect by the same hypothesis, we need to assume the existence of two subtypes of MST D cells which show directionally selective responses to a translational flow: component cells and integration cells. Our physiological investigation revealed that the MST D cells could be divided into two types: one responded to a transparent flow by two peaks at the instances when the direction of one of the component flow matched the preferred direction of the cell, and the other responded by a single peak at the instance when the direction of the integrated motion matched the preferred direction. In psychophysical experiments on human subjects, we found evidence for the existence of component and integration representations in the human brain. To explain the different motion perceptions, i.e., two transparent flows during presentation of the flows and a single flow in the opposite direction to the integrated flows after stopping the flow stimuli, we suggest that the pattern-discrimination system can select the motion representation that is consistent with the perception of the pattern from two motion representations. We discuss the computational aspects related to the integration of component motion fields
Cynomolgus monkey testicular cDNAs for discovery of novel human genes in the human genome sequence
BACKGROUND: In order to contribute to the establishment of a complete map of transcribed regions of the human genome, we constructed a testicular cDNA library for the cynomolgus monkey, and attempted to find novel transcripts for identification of their human homologues. RESULT: The full-insert sequences of 512 cDNA clones were determined. Ultimately we found 302 non-redundant cDNAs carrying open reading frames of 300 bp-length or longer. Among them, 89 cDNAs were found not to be annotated previously in the Ensembl human database. After searching against the Ensembl mouse database, we also found 69 putative coding sequences have no homologous cDNAs in the annotated human and mouse genome sequences in Ensembl. We subsequently designed a DNA microarray including 396 non-redundant cDNAs (with and without open reading frames) to examine the expression of the full-sequenced genes. With the testicular probe and a mixture of probes of 10 other tissues, 316 of 332 effective spots showed intense hybridized signals and 75 cDNAs were shown to be expressed very highly in the cynomolgus monkey testis, but not ubiquitously. CONCLUSIONS: In this report, we determined 302 full-insert sequences of cynomolgus monkey cDNAs with enough length of open reading frames to discover novel transcripts as human homologues. Among 302 cDNA sequences, human homologues of 89 cDNAs have not been predicted in the annotated human genome sequence in the Ensembl. Additionally, we identified 75 dominantly expressed genes in testis among the full-sequenced clones by using a DNA microarray. Our cDNA clones and analytical results will be valuable resources for future functional genomic studies
High-Sensitivity Real-Time Imaging of Dual Protein-Protein Interactions in Living Subjects Using Multicolor Luciferases
Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay (PCA). Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions because of its irreversibility or the time for chromophore formation. By contrast, PCAs using bioluminescent proteins can overcome these drawbacks. We herein describe an imaging method for real-time analysis of protein-protein interactions using multicolor luciferases with different spectral characteristics. The sensitivity and signal-to-background ratio were improved considerably by developing a carboxy-terminal fragment engineered from a click beetle luciferase. We demonstrate its utility in spatiotemporal characterization of Smad1–Smad4 and Smad2–Smad4 interactions in early developing stages of a single living Xenopus laevis embryo. We also describe the value of this method by application of specific protein-protein interactions in cell cultures and living mice. This technique supports quantitative analyses and imaging of versatile protein-protein interactions with a selective luminescence wavelength in opaque or strongly auto-fluorescent living subjects
Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI
National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH); National Science Foundation of China (NSFC) [81201086]Purpose: The use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T-1) or transverse (T-2) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection. Procedures: With a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T-2 weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Results: Based on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T-2 relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to -4.12 +/- 0.71. Dual contrast MRI also enhanced the delineation of tumor borders and small lesions. Conclusions: DC-MRI will be helpful to improve diagnostic accuracy and decrease the threshold size for lesion detection. (C) 2012 Elsevier Inc. All rights reserved
Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs
Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells.National Institute for Biomedical Imaging and Bioengineering (U.S.)National Institutes of Health (U.S.)AXA Research Fund (Postdoctoral Fellowship)National Research Foundation of Korea (Postdoctoral Fellowship 2013R1A6A3A03)National Research Foundation of Korea (Grant 2009-0080734
Central amygdala is related to the reduction of aggressive behavior by monosodium glutamate ingestion during the period of development in an ADHD model rat
IntroductionMonosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model.MethodsLong-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG.ResultsThe resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA.ConclusionMSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity
Rescue from Stx2-Producing E. coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice
Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection
Rescue from Stx2-Producing E. coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice
Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection
- …