7 research outputs found

    Residues at the tip of the pore loop of NR3B-containing NMDA receptors determine Ca2+ permeability and Mg2+ block

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the complex N-methyl-D-aspartate receptor (NMDAR) subfamily of ionotropic glutamate receptors (iGluRs) conventionally assemble from NR1 and NR2 subunits, the composition of which determines receptor properties. Hallmark features of conventional NMDARs include the requirement for a coagonist, voltage-dependent block by Mg<sup>2+</sup>, and high permeability for Ca<sup>2+</sup>. Both Mg<sup>2+ </sup>sensitivity and Ca<sup>2+ </sup>permeability are critically dependent on the amino acids at the N and N+1 positions of NR1 and NR2. The recently discovered NR3 subunits feature an unprecedented glycine-arginine combination at those critical sites within the pore. Diheteromers assembled from NR1 and NR3 are not blocked by Mg<sup>2+ </sup>and are not permeable for Ca<sup>2+</sup>.</p> <p>Results</p> <p>Employing site-directed mutagenesis of receptor subunits, electrophysiological characterization of mutants in a heterologous expression system, and molecular modeling of the NMDAR pore region, we have investigated the contribution of the unusual NR3 N and N+1 site residues to the unique functional characteristics of receptors containing these subunits. Contrary to previous studies, we provide evidence that both the NR3 N and N+1 site amino acids are critically involved in mediating the unique pore properties. Ca<sup>2+ </sup>permeability could be rescued by mutating the NR3 N site glycine to the NR1-like asparagine. Voltage-dependent Mg<sup>2+ </sup>block could be established by providing an Mg<sup>2+ </sup>coordination site at either the NR3 N or N+1 positions. Conversely, "conventional" receptors assembled from NR1 and NR2 could be made Mg<sup>2+ </sup>insensitive and Ca<sup>2+ </sup>impermeable by equipping either subunit with the NR3-like glycine at their N positions, with a stronger contribution of the NR1 subunit.</p> <p>Conclusions</p> <p>This study sheds light on the structure-function relationship of the least characterized member of the NMDAR subfamily. Contrary to previous reports, we provide evidence for a critical functional involvement of the NR3 N and N+1 site amino acids, and propose them to be the essential determinants for the unique pore properties mediated by this subunit.</p

    Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter

    Full text link
    Background: Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky’ immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes. Methods: Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay. Expression regulation of molecules involved in vesicular glutamate release was examined by quantitative real-time PCR, and mechanisms of non-vesicular glutamate release were studied by pharmacological blocking experiments. The impact of CD8+ T cell-mediated glutamate liberation on neuronal viability was studied in acute brain slice preparations. Results: Following T cell receptor stimulation, CD8+ T cells acquire the molecular repertoire for vesicular glutamate release: (i) they upregulate expression of glutaminase required to generate glutamate via deamination of glutamine and (ii) they upregulate expression of vesicular proton-ATPase and vesicular glutamate transporters required for filling of vesicles with glutamate. Subsequently, CD8+ T cells release glutamate in a strictly stimulus-dependent manner. Upon repetitive T cell receptor stimulation, CD25high CD8+ T effector cells exhibit higher estimated single cell glutamate release rates than CD25low CD8+ T memory cells. Moreover, glutamate liberation by oligodendrocyte-reactive CD25high CD8+ T effector cells is capable of eliciting collateral excitotoxic cell death of neurons (despite glutamate re-uptake by glia cells and neurons) in intact CNS gray matter. Conclusion: Glutamate release may represent a crucial effector pathway of neural-antigen reactive CD8+ T cells, contributing to excitotoxicity in CNS inflammation.<br

    TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation.

    Get PDF
    TRPM2, a highly Ca(2+)-permeable member of the transient receptor potential melastatin-related (TRPM) family of cation channels, is expressed in cells of the immune system. We demonstrate firstly that TRPM2 cation channels on T cells critically influence T cell proliferation and proinflammatory cytokine secretion following polyclonal T cell receptor stimulation. Consistently, trpm2-deficient mice exhibited an attenuated clincal phenotype of experimental autoimmune encephalomyelitis (EAE) with reduced inflammatory and demyelinating spinal cord lesions. Importantly, trmp2-deficient T cells were as susceptible as wildtype T cells to oxidative stress-induced cell death as it occurs in inflammatory CNS lesions. This supports the notion that the attenuated EAE phenotype is mainly due to reduced T cell effector functions but unaffected by potential modulation of T cell survival at the site of inflammation. Our findings suggest TRPM2 cation channels as a potential target for treating autoimmune CNS inflammation

    TRPM2 channels do not impact survival of activated CD4<sup>+</sup> T cells under altered redix conditions.

    No full text
    <p>Suvival of activated bead-stimulated CD4<sup>+</sup> T cells (bead:cell ratio of 1∶4) from wildtype and trpm2-deficient mice under various concentrations of H<sub>2</sub>O<sub>2</sub> (0.001–10 mM) using the amount of ATP relased following cell lysis as a parameter of cell viability (n = 3; ns  =  not significant).</p

    TRPM2 cation channels critically determine proliferation and proinflammatory cytokine secretion following various strengths of polyclonal T cell receptor triggering.

    No full text
    <p>(<b>A–D</b>) Proliferation as determined by <sup>3</sup>[H]-thymidine uptake (<b>A</b>; bead:cell ratio of 1∶4) and secretion of proinflammatory IL-2 (<b>B</b>), IFN-Îł (<b>C</b>) and IL-17 (<b>D</b>) determined by ELISA from the supernatants were significantly reduced in spleenocytes from trpm2-deficient as compared to wildtype mice following anti-CD3/CD28 bead-stimulation for 3 days at various bead:cell ratios (1∶1 to 1∶16; n = 3 for all experiments). P-values ≀0.05 were considered significant (*). P-values ≀0.01 and ≀0.001 were considered highly significant (** and ***, respectively).</p
    corecore