3 research outputs found

    Elevated Levels of Trace Elements in Cores of Otoliths and Their Potential for Use as Natural Tags

    Get PDF
    Variation in the chemical composition of fish otoliths has been used in recent years to address a range of ecological questions, including levels of stock mixing, variation in habitat use, and rates of larval exchange. While some of these questions have been answered with varying success, the degree to which discrete populations are connected via larval exchange remains unknown. To identify larval sources using natural variation in otolith chemistry, we must distinguish and measure the chemical composition of the otolith core, the portion of the otolith formed at the spawning site. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), we found that the core regions of otoliths from 6 different species of fishes were highly enriched in manganese (Mn), and elevated in magnesium (Mg) and barium (Ba), relative to adjacent regions of the otolith. These patterns were consistent for species drawn from different taxonomic groups, which inhabit temperate and tropical regions, are found in marine and freshwater, and utilize a variety of spawning modes. Variation among species in Mn concentration in the core also corresponds to maternal investment, measured by egg size. These data suggest that core enrichment may be a general characteristic of otoliths, and that the chemical composition of the otolith core is fundamentally different from other regions of the otolith. The localized elemental enrichment of the core underscores the importance of methods that analyze the core region in small, discrete samples if otolith chemistry is used to address questions of larval exchange among populations

    Use of artificial habitats as a detection tool

    No full text
    <h2>Abstract</h2><div><p><em>Galaxias maculatus</em> is a diadromous riparian-spawning fish that supports an important fishery. Eggs develop terrestrially as with several other teleost fishes. Spawning habitat occurs in specific locations near rivermouths and its protection is a conservation priority. However, quantifying the areas involved is hampered by high egg mortality rates on degraded waterway margins. We hypothesised that temporary artificial habitat would detect spawning in these situations producing a useful indicator for riparian management. We installed arrays of straw bales as artificial habitat in two independent experiments over consecutive years and assessed their impact using pairwise Before-After-Control-Impact (BACI) experimental designs. We tested degraded gaps within the distribution of known spawning sites and also areas further upstream and downstream. Nine spawning occurrences were recorded on artificial habitats in 2015, 22 in 2016, and two on paired controls. Both experiments produced a significant effect for artificial habitats deployed in degraded gaps within the known spawning site distribution (p = 0.0001) providing evidence that these locations should be regarded as actual or potential spawning sites. In 2016 the technique also produced a significant effect downstream of known sites in one of the study catchments (p = 0.0375). We believe the use of artificial habitats as a detection tool could be useful in a variety of management contexts. These include identifying areas for protection, as confirmation of site suitability prior to making restoration investments, and in investigations to support the migration of habitats to new locations under climate change, since these may currently be degraded.</p></div

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore