4,720 research outputs found
Spin-orbit coupled j=1/2 iridium moments on the geometrically frustrated fcc lattice
Motivated by experiments on the double perovskites La2ZnIrO6 and La2MgIrO6,
we study the magnetism of spin-orbit coupled j=1/2 iridium moments on the
three-dimensional, geometrically frustrated, face-centered cubic lattice. The
symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and
symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich
variety of orders, including collinear A-type antiferromagnetism, stripe order
with moments along the [111]-direction, and incommensurate non-coplanar
spirals, and we use Monte Carlo simulations to determine their magnetic
ordering temperatures. We argue that existing thermodynamic data on these
iridates underscores the presence of a dominant Kitaev exchange, and also
suggest a resolution to the puzzle of why La2ZnIrO6 exhibits `weak'
ferromagnetism, but La2MgIrO6 does not.Comment: 5 pages, 5 figs, significantly revised to address referee comments,
to appear in PRB Rapid Com
Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy
This paper reports the solution of the equation of motion for a domain wall
in a magnetic material which exhibits high magneto-crystalline anisotropy.
Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion,
we solve the equation to give an analytical expression, which specifies the
domain wall position as a function of time. Taking parameters from a Co/Pt
multilayer system, we find good quantitative agreement between calculated and
experimentally determined wall velocities, and show that high field uniform
wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure
Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field
We present magnetotransport results for a 2D electron gas (2DEG) subject to
the quasi-random magnetic field produced by randomly positioned sub-micron Co
dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe
strong local and non-local anisotropic magnetoresistance for external magnetic
fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is
due to the changing topology of the quasi-random magnetic field in which
electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
Additive effects of two growth QTL on cattle chromosome 14
The document attached has been archived with permission from the World Congress on Genetics Applied to Livestock Production.DNA-marker technology has the potential to assist seed-stock beef producers with genetic improvement of traits that are difficult to measure, and to assist research workers in identifying chromosomal regions containing quantitative trait loci (QTL), and eventually genes, which control animal performance traits. A collaborative study was established in 1995 between AgResearch in New Zealand (NZ) and Adelaide University in Australia to search for DNA markers significantly linked to production, carcass and meat quality traits in beef cattle. The present paper reports on a sub-set of that data, namely evidence from microsatellite markers on chromosome (Chr) 14 of significant linkage to growth traits and hot carcass weight (HSCW) at a standard level of trim
Recommended from our members
Mid-century climate change impacts on tornado-producing tropical cyclones
Tornadoes are a co-occurring extreme that can be produced by landfalling tropical cyclones (TCs). These tornadoes can exacerbate the loss of life and property damage caused by the TC from which they were spawned. It is uncertain how the severe weather environments of landfalling TCs may change in a future climate and how this could impact tornado activity from TCs. In this study, we investigated four TCs that made landfall in the U.S. and produced large tornado outbreaks. We performed four-member ensembles of convective-allowing (4-km resolution) regional climate model simulations representing each TC in the historical climate and a mid-twenty-first century future climate. To identify potentially tornadic storms, or TC-tornado (TCT) surrogates, we used thresholds for three-hourly maximum updraft helicity and radar reflectivity, as tornadoes are not resolved in the model. We found that the ensemble-mean number of TCT-surrogates increased substantially (56–299%) in the future, supported by increases in most-unstable convective available potential energy, surface-to-700-hPa bulk wind shear, and 0–1-km storm-relative helicity in the tornado-producing region of the TCs. On the other hand, future changes in most-unstable convective inhibition had minimal influence on future TCT-surrogates. This provides robust evidence that tornado activity from TCs may increase in the future. Furthermore, TCT-surrogate frequency between 00Z and 09Z increased for three of the four cases, suggesting enhanced tornado activity at night, when people are asleep and more likely to miss warnings. All of these factors indicate that TC-tornadoes may become more frequent and a greater hazard in the future, compounding impacts from future increases in TC winds and precipitation
- …