4,720 research outputs found

    Spin-orbit coupled j=1/2 iridium moments on the geometrically frustrated fcc lattice

    Full text link
    Motivated by experiments on the double perovskites La2ZnIrO6 and La2MgIrO6, we study the magnetism of spin-orbit coupled j=1/2 iridium moments on the three-dimensional, geometrically frustrated, face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear A-type antiferromagnetism, stripe order with moments along the [111]-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures. We argue that existing thermodynamic data on these iridates underscores the presence of a dominant Kitaev exchange, and also suggest a resolution to the puzzle of why La2ZnIrO6 exhibits `weak' ferromagnetism, but La2MgIrO6 does not.Comment: 5 pages, 5 figs, significantly revised to address referee comments, to appear in PRB Rapid Com

    Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy

    Full text link
    This paper reports the solution of the equation of motion for a domain wall in a magnetic material which exhibits high magneto-crystalline anisotropy. Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion, we solve the equation to give an analytical expression, which specifies the domain wall position as a function of time. Taking parameters from a Co/Pt multilayer system, we find good quantitative agreement between calculated and experimentally determined wall velocities, and show that high field uniform wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure

    Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field

    Full text link
    We present magnetotransport results for a 2D electron gas (2DEG) subject to the quasi-random magnetic field produced by randomly positioned sub-micron Co dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe strong local and non-local anisotropic magnetoresistance for external magnetic fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is due to the changing topology of the quasi-random magnetic field in which electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Additive effects of two growth QTL on cattle chromosome 14

    Get PDF
    The document attached has been archived with permission from the World Congress on Genetics Applied to Livestock Production.DNA-marker technology has the potential to assist seed-stock beef producers with genetic improvement of traits that are difficult to measure, and to assist research workers in identifying chromosomal regions containing quantitative trait loci (QTL), and eventually genes, which control animal performance traits. A collaborative study was established in 1995 between AgResearch in New Zealand (NZ) and Adelaide University in Australia to search for DNA markers significantly linked to production, carcass and meat quality traits in beef cattle. The present paper reports on a sub-set of that data, namely evidence from microsatellite markers on chromosome (Chr) 14 of significant linkage to growth traits and hot carcass weight (HSCW) at a standard level of trim
    corecore