1,154 research outputs found
Administrative Law and the Environment: National Fuels Policy (Symposium Preface)
Administrative Law and the Environment: National Fuels Policy, Symposiu
Investigation of Three Design Modifications of the NACA Injection Impeller in an R-3350 Engine
An investigation was conducted to determine the effects of three design modifications of the original NACA injection impeller on the performance of an R-3350 engine. Different methods of injecting the fuel into the impeller air stream were studied and evaluated from the individual cylinder fuel-air ratios and the resulting cylinder temperatures. Each impeller was tested for a range of engine powers normally used in flight operation. The relatively simple design of the original injection impeller produced approximately the same mixture- and temperature-distribution characteristics as the modified impellers of more complex design. None of the modifications appreciably affected the manifold pressure, the combustion-air flow, nor the throttle angle required to maintain a given engine power
Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C kappa carbides
Carbides play a central role for the strength and ductility in many
materials. Simulating the impact of these precipitates on the mechanical
performance requires the knowledge about their atomic configuration. In
particular, the C content is often observed to substantially deviate from the
ideal stoichiometric composition. In the present work, we focus on Fe-Mn-Al-C
steels, for which we determined the composition of the nano-sized kappa
carbides (Fe,Mn)3AlC by atom probe tomography (APT) in comparison to larger
precipitates located in grain boundaries. Combining density functional theory
with thermodynamic concepts, we first determine the critical temperatures for
the presence of chemical and magentic disorder in these carbides. Secondly, the
experimentally observed reduction of the C content is explained as a compromise
between the gain in chemical energy during partitioning and the elastic strains
emerging in coherent microstructures
Understanding anharmonicity in fcc Materials: From its origin to ab initio strategies beyond the quasiharmonic approximation
We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the computation of anharmonic contributions using a few T=0K DFT calculations only. © Published by the American Physical Society 2015
- …