48 research outputs found

    A machine learning‑based image segmentation method to quantify in vitro osteoclast culture endpoints

    Get PDF
    Quantification of in vitro osteoclast cultures (e.g. cell number) often relies on manual counting methods. These approaches are labour intensive, time consuming and result in substantial inter- and intra-user variability. This study aimed to develop and validate an automated workflow to robustly quantify in vitro osteoclast cultures. Using ilastik, a machine learning-based image analysis software, images of tartrate resistant acid phosphatase-stained mouse osteoclasts cultured on dentine discs were used to train the ilastik-based algorithm. Assessment of algorithm training showed that osteoclast numbers strongly correlated between manual- and automatically quantified values (r = 0.87). Osteoclasts were consistently faithfully segmented by the model when visually compared to the original reflective light images. The ability of this method to detect changes in osteoclast number in response to different treatments was validated using zoledronate, ticagrelor, and co-culture with MCF7 breast cancer cells. Manual and automated counting methods detected a 70% reduction (p < 0.05) in osteoclast number, when cultured with 10 nM zoledronate and a dose-dependent decrease with 1-10 μM ticagrelor (p < 0.05). Co-culture with MCF7 cells increased osteoclast number by ≥ 50% irrespective of quantification method. Overall, an automated image segmentation and analysis workflow, which consistently and sensitively identified in vitro osteoclasts, was developed. Advantages of this workflow are (1) significantly reduction in user variability of endpoint measurements (93%) and analysis time (80%); (2) detection of osteoclasts cultured on different substrates from different species; and (3) easy to use and freely available to use along with tutorial resources

    Developmental axon pruning mediated by BDNF-p75NTR–dependent axon degeneration

    Get PDF
    The mechanisms that regulate the pruning of mammalian axons are just now being elucidated. Here, we describe a mechanism by which, during developmental sympathetic axon competition, winning axons secrete brain-derived neurotrophic factor (BDNF) in an activity-dependent fashion, which binds to the p75 neurotrophin receptor (p75NTR) on losing axons to cause their degeneration and, ultimately, axon pruning. Specifically, we found that pruning of rat and mouse sympathetic axons that project to the eye requires both activity-dependent BDNF and p75NTR. p75NTR and BDNF are also essential for activity-dependent axon pruning in culture, where they mediate pruning by directly causing axon degeneration. p75NTR, which is enriched in losing axons, causes axonal degeneration by suppressing TrkA-mediated signaling that is essential for axonal maintenance. These data provide a mechanism that explains how active axons can eliminate less-active, competing axons during developmental pruning by directly promoting p75NTR-mediated axonal degeneration

    IL-27 Regulates IL-18 Binding Protein in Skin Resident Cells

    Get PDF
    IL-18 is an important mediator involved in chronic inflammatory conditions such as cutaneous lupus erythematosus, psoriasis and chronic eczema. An imbalance between IL-18 and its endogenous antagonist IL-18 binding protein (BP) may account for increased IL-18 activity. IL-27 is a cytokine with dual function displaying pro- and anti-inflammatory properties. Here we provide evidence for a yet not described anti-inflammatory mode of action on skin resident cells. Human keratinocytes and surprisingly also fibroblasts (which do not produce any IL-18) show a robust, dose-dependent and highly inducible mRNA expression and secretion of IL-18BP upon IL-27 stimulation. Other IL-12 family members failed to induce IL-18BP. The production of IL-18BP peaked between 48–72 h after stimulation and was sustained for up to 96 h. Investigation of the signalling pathway showed that IL-27 activates STAT1 in human keratinocytes and that a proximal GAS site at the IL-18BP promoter is of importance for the functional activity of IL-27. The data are in support of a significant anti-inflammatory effect of IL-27 on skin resident cells. An important novel property of IL-27 in skin pathobiology may be to counter-regulate IL-18 activities by acting on keratinocytes and importantly also on dermal fibroblasts

    NGF Causes TrkA to Specifically Attract Microtubules to Lipid Rafts

    Get PDF
    Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75NTR collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75NTR both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75NTR. When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75NTR, was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75NTR partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance

    Loss of Caveolin-1 Accelerates Neurodegeneration and Aging

    Get PDF
    The aged brain exhibits a loss in gray matter and a decrease in spines and synaptic densities that may represent a sequela for neurodegenerative diseases such as Alzheimer's. Membrane/lipid rafts (MLR), discrete regions of the plasmalemma enriched in cholesterol, glycosphingolipids, and sphingomyelin, are essential for the development and stabilization of synapses. Caveolin-1 (Cav-1), a cholesterol binding protein organizes synaptic signaling components within MLR. It is unknown whether loss of synapses is dependent on an age-related loss of Cav-1 expression and whether this has implications for neurodegenerative diseases such as Alzheimer's disease.We analyzed brains from young (Yg, 3-6 months), middle age (Md, 12 months), aged (Ag, >18 months), and young Cav-1 KO mice and show that localization of PSD-95, NR2A, NR2B, TrkBR, AMPAR, and Cav-1 to MLR is decreased in aged hippocampi. Young Cav-1 KO mice showed signs of premature neuronal aging and degeneration. Hippocampi synaptosomes from Cav-1 KO mice showed reduced PSD-95, NR2A, NR2B, and Cav-1, an inability to be protected against cerebral ischemia-reperfusion injury compared to young WT mice, increased Aβ, P-Tau, and astrogliosis, decreased cerebrovascular volume compared to young WT mice. As with aged hippocampi, Cav-1 KO brains showed significantly reduced synapses. Neuron-targeted re-expression of Cav-1 in Cav-1 KO neurons in vitro decreased Aβ expression.Therefore, Cav-1 represents a novel control point for healthy neuronal aging and loss of Cav-1 represents a non-mutational model for Alzheimer's disease

    Why so serious? Theorising playful model-driven group decision support with situated affectivity

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.An integrative approach to theorising behavioural, affective and cognitive processes in modeldriven group decision support (GDS) interventions is needed to gain insight into the (micro-)processes by which outcomes are accomplished. This paper proposes that the theoretical lens of situated affectivity, grounded in recent extensions of scaffolded mind models, is suitable to understand the performativity of affective micro-processes in model-driven GDS interventions. An illustrative vignette of a humorous micro-moment in a group decision workshop is presented to reveal the performativity of extended affective scaffolding processes for group decision development. The lens of situated affectivity constitutes a novel approach for the study of interventionist practice in the context of group decision making (and negotiation). An outlook with opportunities for future research is offered to facilitate an integrated approach to the study of cognitive-affective and behavioural micro-processes in model-driven GDS interventions.This work was supported in part by the EU FP7-ENERGY- SMARTCITIES-2012 (314277) project STEEP (Systems Thinking for Comprehensive City Efficient Energy Planning
    corecore