11 research outputs found

    The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice

    Get PDF
    AbstractThe adaxial–abaxial axis in leaf primordia is thought to be established first and is necessary for the expansion of the leaf lamina along the mediolateral axis. To understand axis information in leaf development, we isolated the adaxialized leaf1 (adl1) mutant in rice, which forms abaxially rolled leaves. adl1 leaves are covered with bulliform-like cells, which are normally distributed only on the adaxial surface. An adl1 double mutant with the adaxially snowy leaf mutant, which has albino cells that specifically appear in the abaxial mesophyll tissue, indicated that adl1 leaves show adaxialization in both epidermal and mesophyll tissues. The expression of HD-ZIPIII genes in adl1 mutant increased in mature leaves, but not in the young primordia or the SAM. This indicated that ADL1 may not be directly involved in determining initial leaf polarity, but rather is associated with the maintenance of axis information. ADL1 encodes a plant-specific calpain-like cysteine proteinase orthologous to maize DEFECTIVE KERNEL1. Furthermore, we identified intermediate and strong alleles of the adl1 mutant that generate shootless embryos and globular-arrested embryos with aleurone layer loss, respectively. We propose that ADL1 plays an important role in pattern formation of the leaf and embryo by promoting proper epidermal development

    Arabidopsis CUP-SHAPED COTYLEDON3 Regulates Postembryonic Shoot Meristem and Organ Boundary Formation

    No full text
    Overall shoot architecture in higher plants is highly dependent on the activity of embryonic and axillary shoot meristems, which are produced from the basal adaxial boundaries of cotyledons and leaves, respectively. In Arabidopsis thaliana, redundant functions of the CUP-SHAPED COTYLEDON genes CUC1, CUC2, and CUC3 regulate embryonic shoot meristem formation and cotyledon boundary specification. Their functional importance and relationship in postembryonic development, however, is poorly understood. Here, we performed extensive analyses of the embryonic and postembryonic functions of the three CUC genes using multiple combinations of newly isolated mutant alleles. We found significant roles of CUC2 and CUC3, but not CUC1, in axillary meristem formation and boundary specification of various postembryonic shoot organs, such as leaves, stems, and pedicels. In embryogenesis, all three genes make significant contributions, although CUC3 appears to possess, at least partially, a distinct function from that of CUC1 and CUC2. The function of CUC3 and CUC2 overlaps that of LATERAL SUPPRESSOR, which was previously shown to be required for axillary meristem formation. Our results reveal that redundant but partially distinct functions of CUC1, CUC2, and CUC3 are responsible for shoot organ boundary and meristem formation throughout the life cycle in Arabidopsis

    A bifurcated palea mutant infers functional differentiation of WOX3 genes in flower and leaf morphogenesis of barley

    Get PDF
    Barley (Hordeum vulgare) is the fourth most highly produced cereal in the world after wheat, rice and maize and is mainly utilized as malts and for animal feed. Barley, a model crop of the tribe Triticeae, is important in comparative analyses of Poaceae. However, molecular understanding about the developmental processes is limited in barley. Our previous work characterized one of two WUSCHEL-RELATED HOMEOBOX 3 (WOX3) genes present in the barley genome: NARROW LEAFED DWARF1 (NLD1). We demonstrated that NLD1 plays a pivotal role in the development of lateral organs. In the present study, we describe a bifurcated palea (bip) mutant of barley focusing on flower and leaf phenotypes. The palea in the bip mutant was split into two and develop towards inside the lemma surrounding the carpels and anthers. The bip mutant is devoid of lodicules, which develop in a pair at the base of the stamen within the lemma in normal barley. bip also exhibited malformations in leaves, such as narrow leaf due to underdeveloped leaf-blade width, and reduced trichome density. Map-based cloning and expression analysis indicated that BIP is identical to another barley WOX3 gene, named HvWOX3. The bip nld1 double mutant presented a more severe reduction in leaf-blade width and number of trichomes. By comparing the phenotypes and gene expression patterns of various WOX3 mutants, we concluded that leaf bilateral outgrowth and trichome development are promoted by both NLD1 and HvWOX3, but that HvWOX3 serves unique and pivotal functions in barley development that differ from those of NLD1

    Regulation of the plastochron by three many-noded dwarf genes in barley.

    No full text
    The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice
    corecore