21 research outputs found

    Apathy is associated with reduced precision of prior beliefs about action outcomes.

    Get PDF
    Apathy is a debilitating syndrome that is associated with reduced goal-directed behavior. Although apathy is common and detrimental to prognosis in many neuropsychiatric diseases, its underlying mechanisms remain controversial. We propose a new model of apathy, in the context of Bayesian theories of brain function, whereby actions require predictions of their outcomes to be held with sufficient precision for "explaining away" differences in sensory inputs. In the active inference model, apathy results from reduced precision of prior beliefs about action outcomes. We tested this hypothesis using a visuomotor task in healthy adults (N = 47), with experimental manipulation of physical effort and financial reward. Bayesian modeling of performance and participants' perception of their performance was used to infer the precision of their priors. We confirmed that the perception of performance was biased toward the target, which was accounted for by relatively precise prior beliefs about action outcomes. These priors were consistently more precise than the corresponding performance distribution, and were scaled to effort and reward. Crucially, prior precision was negatively associated with trait apathy, suggesting that apathetic individuals had less precise prior beliefs about action outcomes. The results support a Bayesian account of apathy that could inform future studies of clinical populations. (PsycINFO Database Record (c) 2020 APA, all rights reserved)

    Acute anxiety and autonomic arousal induced by CO2 inhalation impairs prefrontal executive functions in healthy humans.

    Get PDF
    Acute anxiety impacts cognitive performance. Inhalation of air enriched with carbon dioxide (CO2) in healthy humans provides a novel experimental model of generalised anxiety, but has not previously been used to assess cognition. We used inhalation of 7.5% CO2 to induce acute anxiety and autonomic arousal in healthy volunteers during neuropsychological tasks of cognitive flexibility, emotional processing and spatial working memory in a single-blind, placebo-controlled, randomized, crossover, within-subjects study. In Experiment 1 (n = 44), participants made significantly more extra-dimensional shift errors on the Cambridge Neuropsychological Test Automated Battery (CANTAB) Intra-Extra Dimensional Set Shift task under CO2 inhalation compared with 'normal' air. Participants also had slower latencies when responding to positive words and made significantly more omission errors for negative words on the CANTAB Affective Go/No-go task. In Experiment 2 (n = 28), participants made significantly more total errors and had poorer heuristic search strategy on the CANTAB Spatial Working Memory task. In both experiments, CO2 inhalation significantly increased negative affect; state anxiety and fear; symptoms of panic; and systolic blood pressure/heart rate. Overall, CO2 inhalation produced robust anxiogenic effects and impaired fronto-executive functions of cognitive flexibility and working memory. Effects on emotional processing suggested a mood-congruent slowing in processing speed in the absence of a negative attentional bias. State-dependent effects of anxiety on cognitive-emotional interactions in the prefrontal cortex warrant further investigation

    Synaptic Loss in Primary Tauopathies Revealed by [11 C]UCB-J Positron Emission Tomography.

    Get PDF
    BACKGROUND: Synaptic loss is a prominent and early feature of many neurodegenerative diseases. OBJECTIVES: We tested the hypothesis that synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) (Richardson's syndrome) and amyloid-negative corticobasal syndrome (CBS). METHODS: Forty-four participants (15 CBS, 14 PSP, and 15 age-/sex-/education-matched controls) underwent PET with the radioligand [11 C]UCB-J, which binds to synaptic vesicle glycoprotein 2A, a marker of synaptic density; participants also had 3 Tesla MRI and clinical and neuropsychological assessment. RESULTS: Nine CBS patients had negative amyloid biomarkers determined by [11 C]PiB PET and hence were deemed likely to have corticobasal degeneration (CBD). Patients with PSP-Richardson's syndrome and amyloid-negative CBS were impaired in executive, memory, and visuospatial tasks. [11 C]UCB-J binding was reduced across frontal, temporal, parietal, and occipital lobes, cingulate, hippocampus, insula, amygdala, and subcortical structures in both PSP and CBD patients compared to controls (P < 0.01), with median reductions up to 50%, consistent with postmortem data. Reductions of 20% to 30% were widespread even in areas of the brain with minimal atrophy. There was a negative correlation between global [11 C]UCB-J binding and the PSP and CBD rating scales (R = -0.61, P < 0.002; R = -0.72, P < 0.001, respectively) and a positive correlation with the revised Addenbrooke's Cognitive Examination (R = 0.52; P = 0.01). CONCLUSIONS: We confirm severe synaptic loss in PSP and CBD in proportion to disease severity, providing critical insight into the pathophysiology of primary degenerative tauopathies. [11 C]UCB-J may facilitate treatment strategies for disease-modification, synaptic maintenance, or restoration. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    The pre-supplementary motor area achieves inhibitory control by modulating response thresholds

    Get PDF
    The pre-supplementary motor area (pre-SMA) is central for the initiation and inhibition of voluntary action. For the execution of action, the pre-SMA optimises the decision of which action to choose by adjusting the thresholds for the required evidence for each choice. However, it remains unclear how the pre-SMA contributes to action inhibition. Here, we use computational modelling of a stop/no-go task, performed by an adult with a focal lesion in the pre-SMA, and 52 age-matched controls. We show that the patient required more time to successfully inhibit an action (longer stop-signal reaction time) but was faster in terms of go reaction times. Computational modelling revealed that the patient’s failure to stop was explained by a significantly lower response threshold for initiating an action, as compared to controls, suggesting that the patient needed less evidence before committing to an action. A similarly specific impairment was also observed for the decision of which action to choose. Together, our results suggest that dynamic threshold modulation may be a general mechanism by which the pre-SMA exerts its control over voluntary action

    Acute anxiety and autonomic arousal induced by CO2 inhalation impairs prefrontal executive functions in healthy humans

    Get PDF
    Acute anxiety impacts cognitive performance. Inhalation of air enriched with carbon dioxide (CO2) in healthy humans provides a novel experimental model of generalised anxiety, but has not previously been used to assess cognition. We used inhalation of 7.5% CO2 to induce acute anxiety and autonomic arousal in healthy volunteers during neuropsychological tasks of cognitive flexibility, emotional processing and spatial working memory in a single-blind, placebo-controlled, randomized, crossover, within-subjects study. In Experiment 1 (n = 44), participants made significantly more extra-dimensional shift errors on the Cambridge Neuropsychological Test Automated Battery (CANTAB) Intra-Extra Dimensional Set Shift task under CO2 inhalation compared with 'normal' air. Participants also had slower latencies when responding to positive words and made significantly more omission errors for negative words on the CANTAB Affective Go/No-go task. In Experiment 2 (n = 28), participants made significantly more total errors and had poorer heuristic search strategy on the CANTAB Spatial Working Memory task. In both experiments, CO2 inhalation significantly increased negative affect; state anxiety and fear; symptoms of panic; and systolic blood pressure/heart rate. Overall, CO2 inhalation produced robust anxiogenic effects and impaired fronto-executive functions of cognitive flexibility and working memory. Effects on emotional processing suggested a mood-congruent slowing in processing speed in the absence of a negative attentional bias. State-dependent effects of anxiety on cognitive-emotional interactions in the prefrontal cortex warrant further investigation

    Evidence for absence of links between striatal dopamine synthesis capacity and working memory capacity, spontaneous eye-blink rate, and trait impulsivity

    No full text
    Individual differences in striatal dopamine synthesis capacity have been associated with working memory capacity, trait impulsivity and spontaneous eye-blink rate (sEBR), as measured with readily available and easily administered, ‘off-the-shelf’ tests. Such findings have raised the suggestion that individual variation in dopamine synthesis capacity, estimated with expensive and invasive brain positron emission tomography (PET) scans, can be approximated with simple, more pragmatic tests. However, direct evidence for the relationship between these simple trait measures and striatal dopamine synthesis capacity has been limited and inconclusive. We measured striatal dopamine synthesis capacity using [18F]-FDOPA PET in a large sample of healthy volunteers (N=94) and assessed the correlation with simple, short tests of working memory capacity, trait impulsivity, and sEBR. We additionally explored the relationship with an index of subjective reward sensitivity. None of these trait measures correlated significantly with striatal dopamine synthesis capacity, nor did they have out-of-sample predictive power. Bayes Factor analyses indicated the evidence was in favour of absence of correlations for all but subjective reward sensitivity. These results warrant caution for using these off-the-shelf trait measures as proxies of striatal dopamine synthesis capacity
    corecore