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Apathy Is Associated With Reduced Precision of Prior Beliefs About

Action Outcomes

Frank H. Hezemans, Noham Wolpe, and James B. Rowe
University of Cambridge

Apathy is a debilitating syndrome that is associated with reduced goal-directed behavior. Although
apathy is common and detrimental to prognosis in many neuropsychiatric diseases, its underlying
mechanisms remain controversial. We propose a new model of apathy, in the context of Bayesian
theories of brain function, whereby actions require predictions of their outcomes to be held with sufficient
precision for “explaining away” differences in sensory inputs. In the active inference model, apathy
results from reduced precision of prior beliefs about action outcomes. We tested this hypothesis using a
visuomotor task in healthy adults (N = 47), with experimental manipulation of physical effort and
financial reward. Bayesian modeling of performance and participants’ perception of their performance
was used to infer the precision of their priors. We confirmed that the perception of performance was
biased toward the target, which was accounted for by relatively precise prior beliefs about action
outcomes. These priors were consistently more precise than the corresponding performance distribution,
and were scaled to effort and reward. Crucially, prior precision was negatively associated with trait
apathy, suggesting that apathetic individuals had less precise prior beliefs about action outcomes. The
results support a Bayesian account of apathy that could inform future studies of clinical populations.
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Apathy is common, debilitating, and detrimental to the progno-
sis in many neurological and psychiatric diseases (Lanctot et al.,
2017; Lansdall et al., 2019; Starkstein, Jorge, Mizrahi, & Robin-
son, 2006), but it also occurs to varying degrees in the healthy
population (Ang, Lockwood, Apps, Muhammed, & Husain, 2017).
Apathy is a complex construct, often decomposed into emotional,
cognitive, and behavioral domains (R. Levy & Dubois, 2006;
Robert et al., 2009). However, its underlying mechanisms are
controversial and several accounts have been put forward for the
reduction in ‘“goal-directedness” of behavior that characterizes
apathy.

Behavioral economics and reinforcement learning models
cast apathy primarily as a pathology of value-based decisions
(Husain & Roiser, 2018). On this basis, apathetic individuals

behave in ways that fail to maximize their utility, given infor-
mation about the likely costs and benefits of different actions.
Specifically, they exert less effort for reward (Chong, Bonnelle,
& Husain, 2016), which has been attributed to deficits in
dopamine-dependent reward sensitivity (Adam et al., 2013; Le
Bouc et al., 2016; Muhammed et al., 2016). However, defining
apathy as a lack of dopamine-dependent motivation has limita-
tions. Current paradigms constrain action to be the consequence
of a stimulus (such as a reward cue) and subsequently evaluate
the action against an external reward function. This does not
directly address the subject’s desire to actively fulfil their
internal goals and beliefs or expectations (Gottlieb & Oudeyer,
2018). Goal-directed behavior can alternatively be regarded as
anticipatory rather than reflexive, such that actions are driven
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by their intended consequences (Hommel, Miisseler, Aschersle-
ben, & Prinz, 2001; Prinz, 1997).

Here, we propose that apathy is directly related to the depen-
dence of motivated behavior on the precision of the representations
of internal goals and beliefs about action outcomes. We build on
the concept that brain function is a form of hierarchical Bayesian
inference (Clark, 2013; Hohwy, 2013). On this basis, the brain
maintains a generative model that optimizes predictions of sensory
inputs and minimizes prediction error or “surprise” (Friston, 2010;
Friston, Daunizeau, Kilner, & Kiebel, 2010). Prediction error can
be minimized in two ways: passively, by changing predictions to
better fit the sensory inputs (perceptual inference), or actively, by
performing actions to change the sensory input itself (active infer-
ence; Adams, Shipp, & Friston, 2013; Friston et al., 2010). We
propose that apathetic behavior is a disorder of active inference,
within an enactive Bayesian framework.

The key question with regard to apathy is how the balance
between perception and action is regulated. Under active inference
theory, the precision (inverse uncertainty) of predictions and sen-
sory input determine their relative contribution to behavior. When
predictions are held with high precision, they will be maintained
even in the face of conflicting sensory input, and induce action so
that the predicted and current state of the world are no longer in
conflict. This means that action requires sensory attenuation: the
transient down-weighting of sensory prediction errors so that ex-
pectations and goals can be fulfilled through action (Brown, Ad-
ams, Parees, Edwards, & Friston, 2013; Wolpe et al., 2016; Wolpe,
Nombela, Ingram, & Wolpert, 2018). Thus, a driving force of
action is the regulation of the precision of predictions. A corollary
is that low prior precision leads to a more passive behavioral state,
where prediction errors are resolved by changing prior beliefs
about the environment instead of by action (Friston et al., 2010,
2014).

The precision of prior beliefs can be inferred through compu-
tational modeling of behavioral data (e.g., Wolpe, Wolpert, &
Rowe, 2014). This can be used to test the mechanism of individual
differences in apathy, in healthy adults and clinical populations,
and in relation to clinical outcomes and neural data (Adams, Huys,
& Roiser, 2016). In the context of visuomotor tasks, we previously
found that the precision of priors was associated with trait opti-
mism, such that more optimistic individuals tended to have more
precise priors, leading to a perceptual distortion toward better
performance (Wolpe et al., 2014). Evidence from Parkinson’s
disease suggests that the precision of priors is related to dopamine
(Wolpe, Nombela, & Rowe, 2015).

To bring these separate lines of evidence into a common ana-
lytical framework, we hypothesized that individuals with greater
apathy have less precise prior beliefs about their action outcomes.
We tested this hypothesis using a visuomotor task that indepen-
dently manipulated effort and reward, and from which the preci-
sion of action priors could be estimated psychophysically. We
predicted that participants’ estimates of performance would be
biased, in line with the integration of sensory evidence with prior
beliefs about action outcomes. Using Bayesian modeling of the
participants’ performance and their reported perception of perfor-
mance, we estimated the precision of participants’ priors and its
fluctuation across levels of effort and reward. We tested whether
individual differences in apathy are related to variation in the

precision of priors, and how the precision of priors depends on
effort and reward.

Method

Participants

We aimed to be sufficiently powered to detect moderate asso-
ciations between task metrics and apathy as follows: to detect a
true correlation of p = 0.4 with a = .05 (two-tailed) and power of
80%, the required sample size is 46. We recruited 53 healthy adult
participants to account for at least 10% data exclusions from
aberrant performance profiles or technical issues. The participants
had no history of a neurological or psychiatric disorder and had
normal or corrected-to-normal vision. The study was approved by
the Cambridge Psychology Research Ethics Committee, and all
participants provided written informed consent. Participants re-
ceived a standard compensation of £6 per hour and a bonus of up
to £5 based on performance. Participants completed the Apathy
Motivation Index (AMI; Ang et al., 2017), a questionnaire measure
of apathy that is designed for the healthy adult population.

We excluded five participants whose average task performance
was =3 times the median absolute deviation from the group
median performance, and one participant who could not perform
the force calibration appropriately. The reported analyses are
therefore based on 47 participants (24 females, age range of 18-35
years, M = 24.75, SD = 4.79; further demographics are given in
Supplementary Table 1 in the online supplemental materials).

Task and Procedure

The visuomotor task (see Figure 1) was designed to infer the
precision of prior beliefs and its influence on the perception of
action outcomes, under different levels of effort and reward. Par-
ticipants pressed a force sensor to control the subsequent ballistic
trajectory of a “ball” cursor on the screen (32-pixel radius). The
aim of each trial was to “land” the cursor on the target (38-pixel
radius). The target was either displayed close (512 pixels from left
margin) or far (896 pixels from left margin) from the ball’s start
position (128 pixels from left margin), such that the distance to
travel corresponded to 35% (low-effort condition) or 65% (high-
effort condition) of each participant’s maximum force. Perfor-
mance was either rewarded (in “points”, to be converted to cash
reward after the study) or not rewarded (reward or no-reward
condition).

For each trial, participants performed a sustained finger press for
3 s, after which the black ball turned green to indicate that the finger
could be released. Within the 3-s recording, we took the mean force
from 2 to 2.5 s as the response (Wolpe et al., 2016). The force
response determined the initial velocity of the ball. The deceleration
of the ball was constant, and therefore the initial velocity (i.e., force
response) uniquely determined the ball’s final position. The difference
between the force response and the force needed to land the ball
perfectly on target constitutes the force error, expressed as a percent-
age of the participant’s maximum force.

Trial type. The task consisted of two types of trials: basic and
estimation. For basic trials, participants viewed an animation of the
ball’s trajectory from the start position to the final position in the
direction of the target—that is, the outcome of their action. The
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Figure 1.

Overview of the visuomotor task. Participants performed a sustained finger press to trigger a

ballistic ball trajectory, aiming it at a target. The target was displayed either close to or far from the ball’s
start position, corresponding to 35% (low effort) or 65% (high effort) of the participant’s maximum force.
Further, participants were given either a performance-dependent monetary reward or no reward. For a
minority of trials, the ball’s movement trajectory was not displayed, and participants estimated the ball’s

final position with a cursor.

difference between the ball’s final position and the target consti-
tutes the performance error, expressed in pixels. For estimation
trials, the ball’s trajectory was hidden and participants used a
mouse cursor to provide their estimate of where the ball would
have finished. The difference between the estimated final ball
position and the true final ball position constitutes the estimation
error, expressed in pixels. Note that the target was not displayed
during the estimation procedure, and participants did not receive
any feedback regarding the true final ball position. Furthermore,
participants were not precued about what type of trial they were
engaging in. For estimation trials the ball’s animation started as
usual, but after traveling 10% of the screen width, the screen
turned blank and the cursor was drawn to the screen.

The experiment started with two practice blocks of 50 basic
trials each, with the target in the center of the screen (704 pixels
from the left margin). In the second practice block, participants
were asked to estimate their performance after viewing the full
trajectory of the ball, to introduce the estimation procedure. The
test phase consisted of 40 blocks of 27 trials each. We used a 2 X
2 full-factorial design (low and high effort; no reward and reward).
In the reward condition, the maximum score of £1 was given when
the ball landed perfectly on the target, and this score decreased
linearly as performance error increased. To avoid confounding the
effort and reward manipulations, the minimal performance re-
quired for a reward was more stringent in the low-effort condition
than in the high-effort condition (15% of the screen width from the
close target vs. 30% of the screen width from the far target).

There were 10 blocks of trials for each combination of effort and
reward, and the blocks were ordered pseudorandomly for each
participant at the start of the experiment. Each block consisted of
19 basic trials and eight estimation trials. The trial order within
each block was determined pseudorandomly, with the constraints
that the first three trials were always basic trials, and that there
could never be two consecutive estimation trials. Overall, excluding
practice, participants completed 1,080 trials, of which 320 were esti-
mation trials. To reduce fatigue effects, we gave participants the
opportunity to take a short break after completing a block.

Maximum force calibration. At the start of the task, we
established each participant’s maximum force to normalize the
effort levels between participants. This procedure consisted of
three trials of 10 s each. Participants pressed with the maximum
level of force they could sustain for the duration of the trial, using
the index finger of their dominant hand. At the end of each trial, a
sliding window function was used to select the 5-s window with
the lowest force variance, and the mean force within that window
was taken as the maximum force for that trial. The highest value
across trials was taken as the participant’s true maximum force.

The maximum force was used to convert the force response to
the ball’s initial velocity. The applied force was divided by 25% of
the maximum force and then multiplied by 30% of the screen
width per second. That is, pressing at 25% of one’s maximum
force caused the ball to initially move at 30% of the screen width
per second. To make the task less difficult under higher levels of
force, we also scaled the relationship between force and initial
velocity by multiplying the applied force by 0.5.
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Data Analysis

Task performance. We preprocessed the data as follows: (a)
we removed the first trial from each block to exclude any effects
of switching between experimental conditions, which reduced the
total number of trials from 1,080 to 1,040 (260 per condition); (b)
for each participant and each condition, we removed trials with a
force error that was more than three times the median absolute
deviation away from that condition’s median. On average, we
removed three trials per condition for each participant.

We first examined the effects of effort and reward on behavioral
performance. Accuracy (median force error) and variability (inter-
quartile range of force error) served as dependent variables in
repeated-measures analysis of variance, with effort and reward as
within-subjects factors. We report generalized eta-squared (#3) as
the estimate of effect size, and we performed post hoc Tukey’s
tests to compare levels of effort and reward. We also performed
Bayes factor (BF) analyses with the default JZS prior to quantify
the relative evidence in favor of a model, given the data (Rouder,
Morey, Speckman, & Province, 2012).

Precision of prior beliefs. To infer the precision of prior
beliefs in the perception of action outcomes, we examined partic-
ipants’ estimates of their own performance as follows. For each
estimation trial, we assumed that the prior and sensory evidence
are Gaussian, such that the optimal estimate of the ball’s final
position can be derived from Bayes’s rule (Wolpe et al., 2014):

Xestimate — W Weprior + (1 - W) * Meevidences (1)

where the weighting w is given by

2
W= B lede‘ncez ) (2)
O evidence + O-prior

For a given estimation trial, we consider the ball’s true final
position as the mean of the sensory evidence distribution pLqyigences
and the target position as the mean of the prior distribution ;-
If a participant has no clear prior expectation regarding their
performance (i.e., a “flat” prior with very large variance cf,,,-or), the
estimate of the ball’s final position would be similar to the ball’s
true final position, affected only by sensory noise with variance
02, 1zence- Conversely, if a participant has an exaggerated expecta-
tion of success (i.e., a prior with very small variance 0,2,”-0,), this
prior would “overwhelm” the sensory evidence, leading to esti-
mates of performance that are biased toward the target relative to
the true final ball position.

Relative weighting of priors.
written as

The first equation can be re-

=—w- (u‘evidence - ““prinr)’ 3)

performance error

KXestimate — Meevidence

estimation error

where the slope of a linear regression of estimation error by
performance error characterizes the weighting term w (Vilares &
Kording, 2017; Wolpe et al., 2014). A slope of —1 corresponds to
full reliance on priors relative to sensory evidence, whereas a slope
of 0 corresponds to a disregard of priors relative to sensory
evidence.

We used linear mixed models to fit the linear relationship of
estimation error by performance error. As a baseline model, we
allowed the intercept and slope to vary by participants. Given that

we expected performance error to depend on effort and reward, we
also fit a set of models with an additional random effect term to
allow for adjustments by effort and reward within each participant.
Specifically, within each participant we allowed either the inter-
cept, the slope, or both to vary by either effort, reward, or both,
resulting in nine additional linear mixed models. For each model
we retrieved the conditional Akaike information criterion (AIC) as
an approximation to the log model evidence. We selected the
model with the lowest conditional AIC value as the most parsi-
monious model.

Modeling of prior precision. To estimate the prior precision
for each participant, we fit the data with a set of hierarchical
Bayesian models. The first model assumed that the prior distribu-
tion was centered on the target with unknown variance (712,,,-0,, and
the sensory evidence distribution was centered on the true final
ball position with unknown variance 62,;4.c.. The observed esti-
mates of the ball’s final position were then modeled as a precision-
weighted combination of the prior distribution and the sensory
evidence distribution (see Equation 1). However, performance of
the task may have been affected by computational imperfections
(Stengard & van den Berg, 2019), such as perceptual shifts as a
result of the ball’s rightward motion or a general bias toward the
center of visual space. The second model therefore featured an
additional free parameter, s, to account for directional shifts in the
mean of sensory evidence:

Wevidence = Xtrue +s. (4)

Although we consider the target as the mean of the prior
distribution, participants could instead use “observational” priors
that reflect their actual performance distribution. We therefore
additionally fit the data with a model that was similar to the first
model, except the prior distribution was determined by the mean
and standard deviation of each participant’s true performance on
basic trials (i.e., when the true final ball position was shown).

We estimated the free parameters hierarchically: (a) parameters
for individual participants were considered samples from group-
level Gaussian distributions and (b) within each participant, pa-
rameters were permitted to vary between experimental conditions.
Further details about the model specification are provided in
Figure 5A and Supplementary Figure 1 in the online supplemental
materials.

We used Markov chain Monte Carlo sampling to approximate the
posterior distributions of parameters simultaneously at the level of the
group, participant, and conditions. For each model, we used eight
independent chains with 2,000 samples, discarding the first 1,000
samples as the “burn-in” period. We assessed model convergence
by the chains’ time series plots, and confirmed that the potential
scale reduction statistic R was less than 1.01 for all parameters. To
identify the best model, we computed the Widely Applicable
Information Criterion (WAIC) to estimate each model’s pointwise
predictive accuracy, penalized for the effective number of param-
eters (Vehtari, Gelman, & Gabry, 2017). Our primary interest was
in the participant-level estimates of prior precision, as well as the
change in prior precision across levels of effort and reward.

Prior precision and trait apathy. We tested the relationship
between model estimates of prior precision and individual differ-
ences in trait apathy. We measured trait apathy with the AMI, a
questionnaire measure of apathy that is suitable for the healthy
population and has strong psychometric properties (Ang et al.,
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2017). The AMI provides a mean total score as well as mean
scores for three different domains of apathy: behavioral activation,
emotional sensitivity, and social motivation. Each subscale con-
sists of six Likert-type scale items scored from O to 4, where higher
scores indicate greater apathy.

As action priors correlate with performance variability and to
rule out the effect of performance, we computed the partial cor-
relation between trait apathy and prior precision using Pearson’s
correlation, adjusted for individual differences in performance
variability. Specifically, we used each participant’s standard devi-
ation of performance error for all basic trials as an index of
performance variability. We performed the partial correlation anal-
ysis separately for each outcome of the AMI. We also report the
BF for partial correlations to quantify the evidence in favor of the
alternative hypothesis, given the data (Wetzels & Wagenmakers,
2012).

Software and Equipment

The task was programmed in MATLAB R2014a using the
Psychophysics Toolbox extensions (Version 3; Kleiner, Brainard,
& Pelli, 2007), and were displayed on a 17-in. LCD screen
(1280 X 1024 pixels). The force sensor had a sampling rate of 60
Hz and a measurement accuracy of =9.8 mN. Statistical analyses
were implemented in R (Version 3.5; R Core Team, 2018; see
Supplementary Table 5 in the online supplemental materials for an
overview of additional packages used). The hierarchical Bayesian
modeling was implemented in Stan (Carpenter et al., 2017) using
the rstan interface package. The Method and Results sections of
this article were generated from R code using the literate program-
ming tool knitr. All code, data and materials are freely available
through the Open Science Framework (https://osf.io/cfvxp/).

Results

Task Performance

For each subject and each condition, we obtained a distribution
of force errors (see Figure 2). We examined accuracy (median
force error) and variability (interquartile range) as a function of
effort and reward (Figure 3; Supplementary Tables 2 and 3 in the
online supplemental materials). Accuracy was lower in the high-
effort condition than in the low-effort condition, as participants
tended to “undershoot” the target in the high-effort condition, F(1,
46) = 206.01, p < .001, ng = .47. Participants were more accurate
in the reward condition than in the no-reward condition, F(1,
46) = 15.01, p < .001, ng = .02. This reward effect was more
pronounced in the high-effort condition, as indicated by a signif-
icant Effort X Reward interaction: F(1, 46) = 11.91, p < .001,
m& = .01. However, the BF indicated that the data were equally
likely under the full model including an interaction effect and the
main effects model, suggesting there is no clear evidence for an
interaction (BF = 0.98).

Variability was greater in the high-effort condition than in the
low-effort condition, F(1,46) = 377.60, p < .001, n3 = .52. There
was reduced variability in the reward condition compared to the
no-reward condition, F(1, 46) = 25.37, p < .001, n = .04, but
this reward effect was not different between effort conditions, as
there was no significant Effort X Reward interaction: F(1, 46) =

example: participant ID 2

A
A
-,
A

low effort,
no reward

low effort,
reward

high effort,
no reward

high effort,
reward

-40% -20% 0% 20% 40%
force error (% of maximum force)

Figure 2. Distributions of force error by experimental conditions for a
typical participant. For each distribution, the white box represents the
interquartile range and the black line inside the box represents the median.
See the online article for the color version of this figure.

0.76, p = .390. The BF confirmed that the data were more likely
under the main effects model than the full model, providing
positive evidence against an interaction effect (BF = 0.26).
Together, these results confirm that on more effortful trials,
performance accuracy decreased and variability increased. In con-
trast, reward improved accuracy and variability in performance.

Perception of Performance

We tested whether there was a bias in the perception of action
outcomes, as found in previous studies (Wolpe et al., 2014, 2015).
To this end, we measured the extent to which estimates of action
outcomes were biased relative to the veridical action outcomes.
We first determined whether the linear relationship between esti-
mation error and performance error varied as a function of effort,
reward, or both. We fitted a set of linear mixed models that
adjusted each participant’s regression intercept and slope. The
“full model” allowed for different intercepts and slopes by both
effort and reward, and was the most likely model with an AIC
difference to the next best model of 34.05 (Supplementary Table 4
in the online supplemental materials). We therefore report the
parameters derived from the full model.

Estimation errors tended to be biased, consistent with a prior
centered on the target position (Figure 4; cf. Wolpe et al., 2014).
The extent of this bias depended on performance error, as revealed
by a strongly negative slope between estimation error and perfor-
mance error (group-level 3 = —0.70, 95% confidence interval
[—0.75, —0.66]). Individual differences in the slope ranged
from —0.90 to —0.36, confirming that all participants exhibited
this estimation bias.

Prior Precision

To test the hypothesis that trait apathy is associated with the
precision (inverse of variance) of priors for the perception of
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A ACCURACY

low effort high effort
= 10%
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no reward reward

W

VARIABILITY
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15%
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IQR of force error (% of maximum)
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X
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Figure 3. The effects of effort and reward on (A) task accuracy and (B) variability. Solid dots represent the (A)
median force error or (B) interquartile range of force error for a given participant and experimental condition.
The hollow dots and horizontal line segments represent the group-level mean for a given experimental condition.
IQR = interquartile range. See the online article for the color version of this figure.

outcomes, we used hierarchical Bayesian models (Figure 5A) to
estimate the standard deviation of each participant’s prior. The
model that best accounted for the data assumed that the prior was
centered on the target position and included a spatial shift in
sensory evidence. This model was strongly preferred over a model
without a sensory evidence shift (AWAIC = 5,741.64, SE xwaic =
154.30) as well as a model with the prior determined by the
mean and standard deviation of participants’ true performance
(AWAIC = 7,645.63, SExwaic = 178.99). As illustrated in
Figure 5B, there was a good agreement between the observed
data and simulated data drawn from the selected model’s pos-
terior predictive distribution. We therefore proceeded with ex-
amining the posterior estimates of the participant-level prior
standard deviation, SD.

example: participant 11
400

@ low effort, no reward
low effort, reward
® high effort, no reward

® high effort, reward

(pixels)
n
8

-200

estimation error

-400

—-400 -200 0 200 400

performance error (pixels)

Figure 4. Estimation errors (difference between estimated and true ball
position) plotted against performance errors (difference between true ball
position and target) for a typical participant. The slope of the regression
across conditions (black line) indicates the degree to which estimates of
performance were biased.

The estimates of prior SD were consistently smaller than the
corresponding performance error SD, #(46) = 17.18, p < .001
(Figure 5C). There was also a strong correlation between prior SD
and performance error SD, r(45) = 0.58, p < .001. These results
suggest that participants held overly precise priors that did not
simply reflect the statistics of their true performance in the task.

Within participants, we allowed the prior SD to vary between
experimental conditions (Figure SA). We therefore examined prior
SD as a function of effort and reward (Supplementary Figure 2 in
the online supplemental materials). Given that prior SD was scaled
to performance SD (Figure 5C), and performance SD was strongly
affected by effort and reward (Figure 3B), we normalized the prior
SD to performance SD (as the ratio between prior SD and the sum
of prior SD and performance SD; Wolpe et al., 2015). This nor-
malized prior SD was smaller in the high-effort condition than in
the low-effort condition, F(1, 46) = 65.24, p < .001, g = .19. In
contrast, normalized prior SD was larger in the reward condition
than in the no-reward condition, F(1, 46) = 7.00, p = .011, 03 =
.01. There was no significant interaction effect between effort and
reward, F(1, 46) = 1.65, p = .205. The BF confirmed that the data
were more likely under the main effects model than the full model,
providing anecdotal evidence against an interaction effect (BF =
0.35).

To test whether the precision of prior beliefs about action
outcomes is associated with trait apathy, we used partial correla-
tions of the participant-level estimates of prior SD and the AMI
scores, adjusting for task performance variability. There was a
significant partial correlation between prior SD and the AMI
behavioral activation subscale, r(45) = 0.37, p = .011, Holm—
Bonferroni corrected p = .045, BF = 3.99 (Figure 6). The asso-
ciation was positive, suggesting that individuals who were more
apathetic had reduced prior precision. There were no significant
partial correlations with the AMI total score, r(45) = 0.18, p =
.226, BF = 0.36, emotional sensitivity subscale, r(45) = 0.11,
p = .464, BF = 0.23, or social motivation subscale,
r(45) = —0.11, p = 464, BF = 0.23.

Given the relationship between prior precision and sensory
evidence precision in our model (see Equation 2), we also tested
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(A) The best fitting Bayesian model. Shaded nodes represent observed data whereas the white nodes

represent latent variables. The rectangular node represents the target position, which is a discrete variable,
whereas the remaining circular nodes represent continuous variables. The double-bordered nodes represent
deterministic variables that are a function of other variables without stochastic contribution. The variable of
primary interest, the standard deviation of the participant-level prior, is highlighted with a blue border. (B)
Posterior predictive check for the best fitting model. The gray histogram represents the observed estimates of
performance, and the overlaid blue density traces represent simulated estimates of performance drawn from the
model’s posterior predictive distribution. (C) Scatterplot of the standard deviation of participant-level prior

against standard deviation of performance error.

for partial correlations between the precision of sensory evidence
and the AMI scales, adjusting for task performance variability.
There were no significant correlations between SD of sensory
evidence and the AMI total score, behavioral activation subscale,
or social motivation subscale (all ps = .411; all BFs = 0.24), but
there was a negative correlation with the emotional sensitivity
subscale, r(45) = —0.38, p = .009, Holm—-Bonferroni corrected
p = .034, BF = 5.12.

We explored whether the effects of the experimental conditions
on normalized prior SD depended on trait apathy, using repeated-
measures analysis of covariance separately for each AMI scale (as
the covariate of interest). We found no evidence for interactions
between the AMI scales and effort or reward. Specifically, the
effect of effort on normalized prior SD did not significantly inter-
act with the AMI total score, F(1, 45) = 0.09, p = .76, behavioral
activation subscale, F(1, 45) = 0.38, p = .54, emotional sensitivity
subscale, F(1, 45) = 0.02, p = .89, or social motivation subscale,
F(1, 45) = 0.02, p = .89. Similarly, there were no significant

interactions between reward and the AMI total score, F(1, 45) =
0.03, p = .86, behavioral activation subscale, F(1,45) = 1.08, p =
.30, emotional sensitivity subscale, F(1, 45) = 0.02, p = .88, or
social motivation subscale, F(1, 45) = 1.66, p = .20. The BF
confirmed that the data were more likely under the main effects
models (without interactions between AMI scores and the exper-
imental conditions) than the full models (all BFs = 0.05).

Discussion

The principal result of this study is that higher trait apathy is
associated with lower precision of prior beliefs about action out-
comes. In the context of effortful, goal-directed actions, we con-
firmed that people’s perception of performance was biased, rela-
tive to the veridical action outcomes. Participants’ estimation of
their action outcomes were explained by “overly precise” priors
that do not simply reflect the statistics of performance. The vari-
ability of these priors was associated with trait apathy, such that
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more apathetic individuals tended to have less precise priors of
action outcomes.

These results are consistent with a Bayesian framework of brain
function, in which the brain engages in active inference on the
causes of sensory inputs. Central to this model is that prior beliefs
and sensory input are combined in a precision-weighted manner,
so that more precise (i.e., less uncertain) information plays a
stronger role in shaping action and perception. A hypothesis
emerging from this framework is that a loss of prior precision leads
to an impairment of goal-directed behavior (e.g., Friston et al.,
2010, 2014). Our results support this hypothesis.

There is evidence that apathetic individuals tend to assign less
value to a specific reward (Adam et al., 2013; Husain & Roiser,
2018; Le Bouc et al., 2016; see also Huys, Pizzagalli, Bogdan, &
Dayan, 2013). When behavior is cast as active (Bayesian) infer-
ence, agents seek to maximize the evidence for their generative
model of the world, rather than seeking to maximize reward as a
separate construct (Friston, Daunizeau, & Kiebel, 2009). This does
not make the concept of reward redundant—instead, goals and
rewarding outcomes are reframed as prior beliefs that are afforded
relatively high precision, so that they are preferentially fulfilled
through action. Thus, our approach does not conflict with reward-
based models of apathy, or the role of dopamine, but accommo-
dates the concept of dopamine-dependent reward sensitivity within
a generalized framework of behavior and perceptual inference.

Although reduced motivation for reward certainly can contrib-
ute to apathy (Adam et al., 2013), this mechanism does not fully
explain the multifaceted nature of apathy in patient groups (Lans-
dall et al., 2017). For example, even in the absence of external
prompts (such as a reward cue), apathetic patients often have
difficulty in self-generating motor patterns, over and above blunted
affect or cognitive dysfunction (R. Levy & Dubois, 2006). Such
“auto-activation” symptoms have previously been formalized as a
failure to reach a necessary activation threshold for a response
(Zhang et al., 2016). Patients were surprisingly biased in favor of
performing an action, but were subsequently impaired at translat-
ing this prior preference into an observed response, as indicated by
a strongly reduced rate of accumulation to threshold (Zhang et al.,
2016). We suggest that the diversity of symptoms associated with

apathy can be understood as different expressions of a common
underlying pathology: a reduction in the precision of prior beliefs
about action outcomes.

Although estimates of prior precision within participants
changed significantly between levels of effort and reward, the
amount of change between conditions did not depend on trait
apathy. This suggests that participants’ overall prior for action
reflects their higher level beliefs and motivations related to trait
apathy, whereas trail-to-trial changes to prior precision in light of
task demands reflect lower level mechanisms of sensorimotor
prediction.

In the current experiment, reward decreased the precision of
priors relative to the true performance distribution. Such a strategy
would promote learning in the context of expected reward, because
the posterior belief will be weighted more toward the evidence
than the prior. In other words, the reward manipulation facilitated
learning from sensory evidence, so that trial-to-trial performance
errors could be used to improve task performance. Indeed, opti-
mizing task performance would be particularly relevant in the
reward condition, as task performance in this section of the exper-
iment determined the size of the bonus payment given after the
study. In contrast to the effect of reward, we found that effort
increased the precision of priors relative to the true performance
distribution. This resembles the illusion of superiority (Wolpe et
al., 2014) that provides a motivational advantage in the more
challenging high-effort condition, when participants’ true perfor-
mance tended to fall short of the target (see Figure 3).

Neuropathologies associated with apathy provide insights into
the functional anatomy and candidate mechanisms of the abnormal
precision of priors. Clinical apathy is associated with disruptions to
frontal-subcortical circuits that are involved in self-initiated, goal-
directed behavior (R. Levy & Dubois, 2006). Lesions of the
prefrontal cortices have long been known to impair goal-directed
behavior (Luria, 1995), and apathy is an important feature of
neurodegenerative diseases affecting prefrontal regions (Chow et
al., 2009; Passamonti, Lansdall, & Rowe, 2018). Lesion and neu-
roimaging studies have also implicated the anterior cingulate cor-
tex and basal ganglia in apathy (Le Heron, Apps, & Husain, 2018;
R. Levy & Dubois, 2006). Thus, current evidence suggests that
apathy follows a disruption to fronto-striatal brain circuits.

Changes in these frontostriatal circuits have been implicated in
controlling the relative precision of predictions and sensory input
(Dayan & Yu, 2006; Friston et al., 2014; Moran et al., 2013). In
Parkinson’s disease, the severe depletion of striatal dopamine is
associated with a loss of sensory attenuation and presence of
apathy, both consequences of impaired active inference (Drui et
al., 2014; Macerollo et al., 2016; Santangelo et al., 2015; Wolpe
et al., 2018). Indeed, individual differences in the degree of
sensory attenuation were negatively related to disease severity, but
positively related to dopamine medication dose (Wolpe et al.,
2018). We hypothesize that neuromodulatory deficits in patients
can cause a loss of prior precision relative to the sensory input,
which subsequently leads to apathy. Furthermore, higher order
prior beliefs about desired outcomes may fail to appropriately
contextualize lower level representations about sensory input due
to structural and functional abnormalities in prefrontal and tempo-
ral brain regions (Rittman et al., 2019). Further work is required to
establish the synaptic and molecular basis of aberrant precision,
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aided by the parameterization of the precision of an individual’s
prior.

Clinical studies have sought to address the extent to which
apathy is distinct from other common neuropsychiatric features,
particularly depression and fatigue. Conceptually, apathy does not
include many of the core features of depression, such as low mood,
distress and negative thoughts about oneself (Marin, 1990). Apa-
thy can be severe in the absence of low mood or negativity,
especially in neurodegenerative disorders (Kirsch-Darrow, Fernan-
dez, Marsiske, Okun, & Bowers, 2006; Lansdall et al., 2017), and
the severity of apathy and depression are not strongly correlated
across patients (M. L. Levy et al., 1998). Fatigue is a complex and
poorly operationalized affective state that can overlap with some
of the features or descriptive terms for apathy or depression
(Kuppuswamy, 2017). Few studies have directly studied the rela-
tionship between apathy and fatigue, but they can be positively
correlated (Ang et al., 2017; Skorvanek et al., 2015). We suggest
that Bayesian models could help to further disambiguate these
behavioral phenotypes, in terms of the specific characteristics of
patients’ generative models. For example, one recent model pro-
poses that depression reflects a shift in the means of higher level
prior beliefs about self-efficacy, as a consequence of prolonged
interoceptive surprise (Stephan et al., 2016). Fatigue might initially
represent an adaptive response to unexpected sensory input about
metabolic states or bodily integrity (i.e., dyshomeostasis), in the
sense that it promotes passivity and rest, while chronic dyshomeo-
stasis leads to a generalized belief of lack of control, as in “learned
helplessness™ (Stephan et al., 2016). Such a model of fatigue and
depression is separable from the model of apathy, as individual
differences in behavior are accounted for by variation in the prior
mean or prior precision, respectively. These different etiologies
may co-occur within a heterogeneous group of patients, within a
generalized understanding of maladaptive behavior, which none-
theless seeks to aid differential diagnosis and treatment decisions
(Stephan & Mathys, 2014).

Although we propose that apathy arises from reduced precision
of prior beliefs, poverty of movement could in principle also arise
from excessive precision of sensory input. Such precise sensory
input would “overwhelm” prior beliefs and therefore encourage
passive (perceptual) inference over action. However, we found that
the precision of sensory evidence was correlated only with an
unexpected measure of emotional blunting (AMI emotional sensi-
tivity) rather than the more relevant behavioral aspects of apathy.
It is interesting to note the AMI behavioral activation and emo-
tional sensitivity scales were previously found to be uncorrelated
in a large normative sample, suggesting some dissociation between
behavioral and emotional aspects of apathy (Ang et al., 2017). We
therefore speculate that the observed correlation between sensory
evidence precision and emotional blunting speaks to a separate
mechanism of emotional inference (Seth & Friston, 2016), or
simply results from Type I error.

There are limitations to this study. First, we examined individual
differences in trait apathy in the healthy population, and the
generalization to apathetic clinical disorders remains to be proven.
A dimensional approach assumes that the mechanisms underlying
normal variation are the same mechanisms that underlie clinical
disorders (Cuthbert & Insel, 2013; Murley et al., 2019) but we
recognize that apathetic patients might be qualitatively different to
controls. Second, our primary results are correlational and there-

fore do not directly demonstrate causal mechanisms. Our results do
not in themselves prove whether the precision of priors is a cause
or consequence of trait apathy. Future work can adopt our ap-
proach to study apathy in the context of neurosurgical or tempo-
rary focal brain lesions (e.g., through transcranial magnetic stim-
ulation) or pharmacological manipulations (e.g., Adam et al.,
2013; Le Bouc et al., 2016; Meyniel et al., 2016). Third, we cannot
comment on the variations in functional anatomy or connectivity
that may determine the precision of priors in our cohort. Finally,
the Bayesian framework for computational models enables relative
evidences to be compared formally (Adams et al., 2016), but only
between members of the subset of models tested.

In conclusion, our study suggests that apathy is associated with
poor precision of prior beliefs about action outcomes. We propose
that apathy can be understood as a failure to assign the necessary
precision to prior beliefs about one’s action outcomes, which is
required for self-initiated movement, leading to an apparent “ac-
ceptance” of the state of the world. This can be understood as
satisfying an intended goal in the absence of the actual action
necessary to achieve it. This approach paves the way to a common
framework for understanding the causes of apathy in neurological
and psychiatric disorders, and a target for novel treatment strate-
gies.

Context of the Research

Apathy occurs to a variable extent among healthy people, but is
common in many neuropsychiatric diseases. It is typically consid-
ered as a failure of self-initiated action arising from reduced
motivation, which is operationalized in terms of the cost or effort
one is willing to incur for reward. We propose a new way to think
about apathy, based on Bayesian inference as a fundamental prop-
erty of brain function. We draw on the concept of active inference,
in which action requires predictions or prior beliefs about action
outcomes to be held with sufficient precision, such that priors
“explain away” sensory input. The critical insight from this model
is that reduced precision of priors would lead to loss of self-
initiated behavior, the hallmark of apathy. We test this hypothesis
using a novel visuomotor task in healthy adults, with experimental
manipulation of effort and reward. Computational modeling indi-
cates that participants use priors that are distributed narrowly
around the goal, with higher precision than their true performance,
and in proportion to effort and reward. Crucially, we confirm that
individual differences in the prior’s precision correlate negatively
with trait apathy. We suggest this approach is suitable to charac-
terize clinical disorders, and individual differences in subclinical
apathy.
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