400 research outputs found

    One-dimensional Rydberg Gas in a Magnetoelectric Trap

    Full text link
    We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the critical linear density of Rydberg atoms.Comment: 4 pages, 2 figure

    Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core

    Get PDF
    We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH_(3)0H are combined with continuum observations from λ = 1.3 mm to λ = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10^5 cm^(-3) and an estimated total mass of approximately 70 M_⊙. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO^(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 L_⊙), implying that it is a low-mass (0.5-3 M_⊙) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales ≤ 1 yr while the central component is relatively constant over ~14 yr. The nature of a newly detected compact emission region, S68 N, is less certain due to the absence of firm continuum detections; based on its low luminosity (<5 L_⊙) and strong molecular emission, S68 N may be prestellar subcondensation of gas and dust

    The influence of a superconducting split-pair solenoid as an insertion device on the performance of a storage ring for synchrotron radiation

    Get PDF
    EINFLUSS EINES ALS INSERTION DEVICE VERWENDETEN SUPRALEITENDEN SPLIT-PAIR SOLENOIDEN AUF DAS VERHALTEN EINES SPEICHERRINGES FÜR SYNCHROTRONSTRAHLUNG Zur Erhöhung der Photonenenergie von Synchrotronstrahlungsquellen wird die Verwendung von starken nichtlinearen Magneten in Betracht gezogen. Solche Magnete können einen starken Einfluß auf die Funktion von Speicherringen ausüben, da sie die Emittanz vergrößern und die dynamische Apertur verringern können. In der vorliegenden Arbeit wird eine Methode vorgestellt, mit deren Hilfe der Einfluß der nichtlinearen Felder auf die dynamische Apertur berechnet werden kann. Mit dieser Methode wird die mögliche Auswirkung eines als Wellenlängenschieber eingesetzten kommerziellen 12 T Split-pair Solenoiden auf die dynamische Apertur der zukünftigen Synchrotronstrahlungsquelle ANKA untersucht

    Ultracold Rydberg Atoms in a Ioffe-Pritchard Trap

    Full text link
    We discuss the properties of ultracold Rydberg atoms in a Ioffe-Pritchard magnetic field configuration. The derived two-body Hamiltonian unveils how the large size of Rydberg atoms affects their coupling to the inhomogeneous magnetic field. The properties of the compound electronic and center of mass quantum states are thoroughly analyzed. We find very tight confinement of the center of mass motion in two dimensions to be achievable while barely changing the electronic structure compared to the field free case. This paves the way for generating a one-dimensional ultracold quantum Rydberg gas.Comment: 30 pages, 10 figures, added references, substantiation of approximation

    High spatial resolution and temporally resolved t(2) (*) mapping of normal human myocardium at 7.0 tesla: an ultrahigh field magnetic resonance feasibility study

    Get PDF
    Myocardial tissue characterization using T(2) (*) relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T(2) (*) mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T(2) (*) imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T(2) (*) mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T(2) (*) maps. In vivo studies showed that the peak-to-peak B(0) difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T(2) (*) weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T(2) (*) values were found for anterior (T(2) (*) = 14.0 ms), anteroseptal (T(2) (*) = 17.2 ms) and inferoseptal (T(2) (*) = 16.5 ms) myocardial segments. Shorter T(2) (*) values were observed for inferior (T(2) (*) = 10.6 ms) and inferolateral (T(2) (*) = 11.4 ms) segments. A significant difference (p = 0.002) in T(2) (*) values was observed between end-diastole and end-systole with T(2) (*) changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T(2) (*) mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes

    Accelerated fast spin-echo magnetic resonance imaging of the heart using a self-calibrated split-echo approach

    Get PDF
    PURPOSE: Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. METHODS: For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. RESULTS: The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. CONCLUSION: SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging

    Interaction-induced stabilization of circular Rydberg atoms

    Full text link
    We discuss a candidate solution for the controlled trapping and manipulation of two individual Rydberg atoms by means of a magnetic Ioffe-Pritchard trap that is superimposed by a constant electric field. In such a trap Rydberg atoms experience a permanent electric dipole moment that can be of the order of several hundred Debye. The interplay of electric dipolar repulsion and three dimensional magnetic confinement leads to a well controllable equilibrium configuration with tunable trap frequency and atomic distance. We thoroughly investigate the trapping potentials and analyze the interaction-induced stabilization of two such trapped Rydberg atoms. Possible limitations and collapse scenarios are discussed.Comment: 18 pages, 5 figure

    Myocardial effective transverse relaxation time T(2)* correlates with left ventricular wall thickness: a 7.0 T MRI study

    Get PDF
    PURPOSE: Myocardial effective relaxation time T2* is commonly regarded as a surrogate for myocardial tissue oxygenation. However, it is legitimate to assume that there are multiple factors that influence T2*. To this end, this study investigates the relationship between T2* and cardiac macromorphology given by left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of the results in the physiological context. METHODS: High spatio-temporally resolved myocardial CINE T2* mapping was performed in 10 healthy volunteers using a 7.0 Tesla (T) full-body MRI system. Ventricular septal wall thickness, left ventricular inner radius, and T2* were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase-resolved magnetic field maps. RESULTS: Ventricular septal T2* changes periodically over the cardiac cycle, increasing in systole and decreasing in diastole. Ventricular septal wall thickness and T2* showed a significant positive correlation, whereas the inner LV radius and T2* were negatively correlated. The effect of macroscopic magnetic field gradients on T2* can be considered minor in the ventricular septum. CONCLUSION: Our findings suggest that myocardial T2* is related to tissue blood volume fraction. Temporally resolved T2* mapping could be beneficial for myocardial tissue characterization and for understanding cardiac (patho)physiology in vivo

    Hundred photon microwave ionization of Rydberg atoms in a static electric field

    Full text link
    We present analytical and numerical results for the microwave excitation of nonhydrogenic atoms in a static electric field when up to 1000 photons are required to ionize an atom. For small microwave fields, dynamical localization in photon number leads to exponentially small ionization while above quantum delocalization border ionization goes in a diffusive way. For alkali atoms in a static field the ionization border is much lower than in hydrogen due to internal chaos.Comment: revtex, 4 pages, 5 figure
    • …
    corecore