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ABSTRACT

Purpose: Myocardial effective relaxation time T, is commonly regarded as a surrogate for myocardial
tissue oxygenation. Yet it is legitimate to assume that the factors influencing T, are of multiple nature.
To this end this study investigates the relationship between T,” and cardiac macromorphology given by
left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of results in

the physiological context.

Methods: High spatio-temporally resolved myocardial CINE T,” mapping was performed in ten healthy
volunteers using a 7.0 T full body MRI system. Ventricular septal wall thickness, left ventricular inner
radius and T, were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase

resolved magnetic field maps.

Results: Ventricular septal T, changes periodically over the cardiac cycle, increasing in systole and
decreasing in diastole. Ventricular septal wall thickness and T,  showed a significant positive correlation
while inner LV radius and T,” were negatively correlated. The impact of macroscopic magnetic field

. * . . . .
gradients on T, can be considered minor in the ventricular septum.

Conclusion: Our findings suggest that myocardial T, is related to tissue blood volume fraction.
Temporally resolved T, mapping could be beneficial for myocardial tissue characterization and for

understanding cardiac (patho)physiology in vivo.

Keywords to the abstract: magnetic resonance imaging, cardiac imaging, high field, myocardial tissue

characterization, susceptibility weighted imaging, T, ultrahigh field MR



INTRODUCTION

A growing number of reports refers to mapping the effective transverse relaxation time T, in basic
cardiovascular magnetic resonance (CMR) research and emerging clinical CMR applications. By
exploiting the blood oxygenation level-dependent (BOLD) effect (1), T, sensitized CMR has been
suggested as a means of assessing myocardial tissue oxygenation and perfusion. T, mapping has been
shown to be capable of detecting myocardial ischemia caused by a stenotic coronary artery (2), to reveal
myocardial perfusion deficits under pharmacological stress (3-8), to study endothelial function (9) or to
assess breathing maneuver-dependent oxygenation changes in the myocardium (10-12). In clinical
application, T, mapping has become the method of choice for myocardial iron quantification, an

essential parameter for guiding therapy in patients with myocardial iron overload (13-17).

The rather long echo times required for sufficient T,” weighting together with the need for balancing the
constraints dictated by cardiac and respiratory motion commonly limit application of T, sensitized CMR
to single cardiac phase, e.g. end diastolic, acquisitions under breath held conditions. Early animal studies
investigated cardiac phase resolved BOLD signal intensity changes over the cardiac cycle (10,18) and

reported differences in the BOLD signal during systole versus diastole.

The linear relationship between magnetic field strength and microscopic susceptibility effects renders
the move to By=7.0 T conceptually appealing for T, mapping (19-22). The enhanced susceptibility effects
at 7.0 T may be useful to lower the detection level and to extend the dynamic range of the sensitivity for
monitoring T, changes. Transitioning to higher magnetic field strengths runs the boon that the in-phase
inter-echo time governed by the fat-water phase shift is reduced from 4.8 ms (210 Hz) at 1.5 T to 1.02
ms (980 Hz) at 7.0 T. This enables rapid acquisition of multiple echoes (23) and facilitates high spatio-

temporally resolved myocardial CINE T,” mapping of the human heart (23).



Myocardial T,” changes are commonly assumed to provide a surrogate for myocardial tissue
oxygenation (17). Yet the factors influencing T, are of multiple nature (24). Further to blood
oxygenation, blood volume fraction per tissue volume, hematocrit, the oxyhemoglobin dissociation
curve, main magnetic field inhomogeneities, tissue susceptibility and tissue microstructure or

micromorphology were reported to govern T, (25-30).

Cardiac macromorphology including ventricular radius and ventricular wall thickness constitutes another
category of physiological parameters that are substantially altered throughout the cardiac cycle and
might affect blood volume fraction and the amount of deoxygenated hemoglobin (deoxyHb) per tissue
volume. Hence it is a legitimate hypothesis that dynamic variation in myocardial T, over the cardiac
cycle can be related to periodic changes in cardiac macromorphology. To test this hypothesis this note
examines myocardial T, , left ventricular wall thickness and left ventricular radius over the cardiac cycle
in healthy subjects at 7.0 T. To meet this goal macroscopic B, fluctuations over the course of the cardiac
cycle are analyzed first to detail its impact on T, . Second, dynamic mapping of myocardial T, of the left
ventricle is performed using high spatio-temporally resolved CINE techniques. This is paralleled by an
assessment of left ventricular radius and ventricular septal wall thickness across the cardiac cycle, which

are then correlated with temporal T, changes in the interventricular septum.



METHODS

Magnetic resonance hardware:

All experiments were performed on a 7.0 T whole body MR system (Magnetom, Siemens Healthcare,
Erlangen, Germany, maximum gradient strength=38 mT/m, maximum slew rate=170 mT/m/ms). A 16
channel transceiver RF coil array tailored for CMR was used (31-33). An MR stethoscope (EasyACT,
MRI.TOOLS GmbH, Berlin, Germany, (34-37)) and pulse oximetry were employed for cardiac triggering

and gating.

B, shimming

To minimize the influence of macroscopic magnetic field inhomogeneities on T, , B, shimming was
carried out prior to Tz*mapping. A B, field map was acquired in a single breath hold in end-diastole
using an axial stack of slices covering the entire heart. A cardiac triggered multi-echo gradient-echo
technique (TEs=2.04 ms and 4.08 ms, TR=5.4 ms, spatial resolution (4.2x4.2x8.0) mm?, 18 slices) was
employed. Based on this field map second order shimming was applied for a shim volume

accommodating a four chamber view and a mid-ventricular short axis view of the heart.

Dynamic B, mapping and magnetic field simulations

To investigate temporal macroscopic field changes as a possible source of T, variations over the cardiac
cycle, high temporal resolution CINE By maps were generated for short axis views of the heart using the
first two echoes of a cardiac triggered, segmented multi-echo gradient-echo (MEGRE) technique (23,38)
(spatial resolution (1.1x1.1x4.0) mm?>, flip angle 15°, TE=2.04-10.20 ms, ATE=1.02 ms, TR = 12.16 ms,
GRAPPA (39), R=4). B, maps were low pass filtered to keep only macroscopic By changes that vary slowly
in space. In-plane B, gradients were calculated for each voxel as the norm of the B, gradients in x and y
direction. Through-plane septal B, gradients were approximated from a line profile in the septum using

end-diastolic B; maps covering a four chamber view of the heart (MEGRE technique, spatial resolution



(1.1x1.1x4.0) mm>, flip angle 20°, TEs=2.04, 3.06, 5.10, 6.12 ms, TR=22.04 ms, GRAPPA R=3). Intravoxel
B, gradients were calculated as the square root sum of squares of in-plane and through-plane Bg
gradients. An approximation of T,  changes induced by B, changes over the cardiac cycle was carried out

based on the equation

L Y1
T, T, T, T, v

with y being the gyromagnetic ratio of the proton and |AB| the absolute intravoxel magnetic field
gradient (40,41). T, was assumed to be constant with regard to macroscopic field changes.

Magnetostatic field simulations were performed in MATLAB (The Mathworks, Natick, USA) (42) based on
the heart of the human voxel model Duke (43) and susceptibility values for blood and tissue (44,45).
Heart models with thin wall and thick wall were obtained by morphologic erosion and dilation to mimic

systole and diastole. Intravoxel field gradients were calculated for a voxel size of 1x1x4 mm?>.

Dynamic myocardial T, mapping

High spatial resolution CINE T,” mapping was performed with a segmented multi-shot multi breath hold
gradient echo technique (23) using: spatial resolution (1.1x1.1x4.0) mm?, flip angle 20°, TEs=2.04-10.20
ms, ATE=1.02 ms, TR=12.16 ms, GRAPPA R=4). T, weighted CINE acquisitions were split in three sub-
acquisitions, each acquired in one breath-hold (23). 2D CINE FLASH acquisitions (spatial resolution
(1.4x1.4x4.0) mm?, flip angle 32°, TE=2.67 ms, TR=5.66 ms, GRAPPA R=2) were used as anatomic
reference. Mid-ventricular short axis views were acquired.

To investigate the effect of fat proton resonances other than methylene for echo times adjusted to fat
and water being in phase, signal simulations were performed in MATLAB (The Mathworks, Natick, USA).
The signal model and fat spectrum described in (46) was employed assuming a myocardial fat fraction of
3% (46,47). In-phase echo times were compared for 1.) water and only fat methylene resonances and
2.) water, fat methylene and fat methyl resonances which are the two dominant peaks in the myocardial

fat spectrum (46).



Volunteer study
Ten healthy volunteers without any known history of cardiac disease (7 male, age=40.8+15.6 (meanzsd),
BMI=22.8+3.2 kg/m?) were included after due approval by the local ethical committee. Informed written

consent was obtained from each volunteer prior to the study.

Data processing:

All data processing was carried out offline using customized MATLAB (The Mathworks, Natick, USA)
routines. All T, sensitized images were de-noised with a spatially adaptive non-local means (SANLM)
filter (48,49) (VBMS8 toolbox (http://dbm.neuro.uni-jena.de/vbm8/) of SPMS8
(http://www.fil.ion.ucl.ac.uk/spm/)). After de-noising, the T,” weighted CINE images from the three
breath holds were co-registered employing a non-rigid registration provided by the MIRT MATLAB
toolbox (https://sites.google.com/site/myronenko/research/mirt). The image series with the shortest
echo time (TE=2.04ms) was used as reference for registration. Images of the three registered scans were
combined to form multi echo series covering nine echoes with increasing T,  weighting. Subsequently,
non-linear T, fitting was performed using the MATLAB trust region algorithm in combination with a
mono-exponential signal decay model. Goodness-of-fit was evaluated by R’. Additionally the fit standard
deviation (T, -STD) was estimated using a recently proposed method (50). Voxels with decreased fit
quality (R* < 0.7 or T,-STD > 3ms) or unnaturally high/low T, (Tz* <lorT, 2 50ms) were considered

unreliable and excluded from further analysis.

Data analysis:
For each volunteer the left ventricular myocardium was manually segmented for all cardiac phases
resulting in myocardial masks. Left ventricular wall thickness and inner radius were calculated for 2.5°

wide radial segments covering the whole myocardium. This procedure was repeated for all cardiac



phases. Median T,  and mean wall thickness were calculated for each cardiac phase to allow assessment
of temporal changes. For this purpose only anteroseptal and inferoseptal segments (51) were
considered, because T,” measurements have been shown to be most reliable in the septum (22). Mean
inner LV radius was calculated per phase by averaging over the whole ventricle to estimate wall stress as
explained below. The averaged values of T,, wall thickness and LV radius per cardiac phase were
determined for all volunteers. Cardiac phases were normalized by division of the actual trigger times by
the respective R-R interval. The number of phases was unified using linear interpolation to allow for
averaging among subjects. Correlation between septal T,” and myocardial wall thickness was analyzed
using the Pearson correlation coefficient. A P-value of P < 0.05 was considered significant. Wall stress in
the left ventricular myocardium was estimated for each radial segment based on the simplified Laplace

equation

T
P53 d

o=
relating transmural pressure p, inner ventricular radius r and myocardial wall thickness d to the left
ventricular wall stress o. Blood pressure was assumed constant during systole (120mmHg) and diastole
(6mmHg) (52). Mean wall stress was calculated for each cardiac phase by averaging the radial segments.

The cumulative frequencies of ventricular septal T, in end-systole and end-diastole were calculated by

. . . . * .
summing the respective relative frequencies of T, for all septal voxels in all volunteers.



RESULTS

Dynamic B, mapping and magnetic field simulations

Low pass filtered cardiac phase resolved By, maps showed very minor variation across the cardiac cycle.
The mean septal intravoxel By gradient was 5.3 + 1.7 Hz/voxel over the cardiac cycle. Figure 1A shows
off-center frequency maps and maps of the intravoxel B, gradient along the cardiac cycle for an
exemplary healthy subject. The mean absolute variation of the mean intravoxel B, gradient in the
interventricular septum over the cardiac cycle was approximately 0.4 + 0.3 Hz/voxel. Regarding the
mean observed septal T, and intravoxel By gradient over the cardiac cycle, the observed maximum
intravoxel By gradient variation translates into a T, variation of approximately 0.7 £ 0.4 ms (Figure 1B).
Model based magnetostatic field simulations comparing hearts with low and high wall thickness showed
only minor differences in field perturbation and intravoxel field gradients as depicted in Figure 2A.
Higher wall thickness resulted in an intravoxel gradient approximately 0.5 Hz less versus low wall
thickness as depicted in Figure 2B for a profile through the septum of a short axis view. This result is
similar to the measured macroscopic intravoxel gradient change. A decrease of the intravoxel field

gradient toward the center of the septum was observed.

Improving T, mapping accuracy by spatially adaptive non local means noise filtering

SANLM filtering decreased the estimated fit standard deviation of T, in the myocardium by
approximately 30% in comparison to fits from unfiltered images. Figure 3 shows original but unfiltered
and noise filtered magnitude images together with the corresponding T, maps and T, STD maps for an
exemplary volunteer highlighting the decrease in noise and T, standard deviation due to filtering. No
artifacts due to filtering were observed in the fitted maps which is in line with previous reports on

improved T, fitting accuracy by non-local means filtering (49,53).



Dynamic myocardial T, mapping

Figure 4A shows a series of T, weighted images of a mid-ventricular short axis view of the heart to
illustrate the overall image quality for the range of echo times used. Corresponding cardiac phase
resolved T, maps are displayed in Figure 4B as an overlay to anatomical FLASH CINE images. A T,
increase can be observed in systole. The septal segments revealed a transmural change of T, with
highest values in the center of the interventricular septum. Corresponding T, fit standard deviation
maps are shown in Figure 4C.

Averaged over all subjects and septal segments for all cardiac phases, mean septal wall thickness (SWT)
was found to be 7.4 + 1.6 mm. A mean T, =14.2 + 1.3 ms was obtained. For end-systole a mean SWT=9.0
+ 1.3 mm and a mean T2*=15.0 *+ 1.4 ms were observed. For end-diastole mean SWT=5.9 + 0.9 mm and
T2*=13.7 + 1.2 ms were determined. The Tz*sysme/ Tz*diasmm ratio was 1.1. The mean range (max — min) of
T, over the cardiac cycle was 3.5 + 1.0ms which is significantly higher (P<0.01) than the 0.7 + 0.4 ms T,

change expected from the periodic macroscopic By variation.

Figure 5 illustrates the relative course of mean septal wall thickness, median septal T,, mean inner
ventricular radius and wall stress over the cardiac cycle for all subjects. An increase of T, during systole
was observed, which is paralleled by an increase in the SWT and a decrease in the left-ventricular radius.
In accordance to the literature myocardial wall stress increases massively during the short isovolumetric
contraction phase of systole due to the pressure increase in the left ventricle, decreases slowly during
the long ejection phase of the systole caused by the increase in wall thickness and decrease of inner
radius, and decreases rapidly during the short isovolumetric relaxation phase of the diastole due to the

left ventricular pressure drop (54-56).
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The mean time courses of T, , septal wall thickness and left ventricular diameter averaged over
volunteers and all segments of the interventricular septum are shown in Figure 6A. End systolic T,” was
considerably higher than end diastolic T, (Figure 6B). Pearson correlation analysis yielded a significant
positive correlation (R=0.85, P <0.001) of T,  and wall thickness (Figure 6C). For the relation between T,
and left ventricular radius Pearson correlation analysis provided a significant negative correlation

(R=-0.87, P<0.001) as outlined in Figure 6D.

Signal simulations for the combined fat water signal revealed that the difference of in-phase echo times

was less than 25us when considering water and fat methylene resonances compared to water, fat

methylene and fat methyl resonances. This yields a difference in the signal magnitudes of less than 0.2%

11



DISCUSSION

This study demonstrated cyclic changes of mean T, over the cardiac cycle with a T, increase in systole
and a T,  decrease in diastole. This is in line with previous reports about myocardial BOLD signal
intensity changes over the cardiac cycle with increased BOLD signal in systole (10,18). The main finding
of our note is that the T,  changes show a positive correlation with myocardial wall thickness and a

negative correlation with left ventricular radius.

To exclude macroscopic field fluctuations as a possible source of cyclic T, changes, macroscopic By
variation was elucidated over the cardiac cycle. The minor variations of septal intravoxel By gradients
detected over the cardiac cycle indicate that the temporal variations in T,  do not result from
macroscopic By changes. This accords with a previous study at 1.5 T reporting only minor By fluctuations
over the cardiac cycle (57), and provides encouragement that such fluctuations are not a concern even

at ultrahigh fields.

We suppose that the observed T, variation is caused by physiological changes such as perfusion and
tissue oxygenation as suggested by Yablonskiy et al who related T, to hematocrit, blood volume fraction
and blood oxygenation (41). If T, is interpreted to reflect tissue oxygenation, the observed systolic T,
increase would imply an increase in left myocardial oxygenation during systole, which is contrary to
physiological knowledge. The contraction of the myocardium compresses the intramyocardial
vasculature such that inflow of arterial blood ceases while deoxygenized blood is squeezed out of the
myocardium toward the venous coronary sinus (55,56,58). Meanwhile the myocytes continue to
consume oxygen (55,58) resulting in a higher fraction of deoxygenized hemoglobin (lower O,-saturation
of Hb; Sp0,) which should result in a T," decrease. However, the major decrease in blood volume

fraction of the myocardium reduces the amount of deoxygenized blood per tissue volume, thereby

12



increasing instead of lowering T, during systole. The short continuation of the increase in T, during the
beginning of diastole which was observed in some volunteers could be caused by the oxygen rich blood

flowing into the myocardium.

We found a positive correlation of wall thickness and T, and a negative correlation between LV radius
and T, According to Laplace's equation, wall thickness, LV radius, and intraventricular pressure
determine wall stress. Our results on the time course of wall thickness, LV radius, and wall stress
throughout the cardiac cycle agree with data obtained by invasive techniques in dogs, in which LV
pressure was additionally recorded (54). The steep rise in wall stress during the short isovolumetric
contraction phase of the systole results from the manifold pressure increase that also reduces the
myocardial blood volume fraction. The mild and slow decrease in wall stress during the ejection phase
relies on the shortening of the myocardium that simultaneously decreases the radius and increases the
wall thickness. With the onset of the diastole, isovolumetric relaxation results in immediate pressure
drop and thus a steep decline in wall stress. The induced increase in myocardial perfusion results in a
higher myocardial blood volume fraction and consequently stronger influence of deoxyhemoglobin on
T, . The observed changes in T, over the cardiac cycle are therefore likely driven by myocardial blood

volume fraction changes dominated by the high pressure difference between diastole and systole.

Another possible confounder could be a more uniform mesoscopic magnetic field and hence reduced
spin dephasing for higher wall thickness due to a more homogenous susceptibility distribution. This
could also explain the observed transmural T, change in septal areas with highest T, in the center
between endo- and epicardium and thus farthest away from susceptibility transitions between blood
and tissue. To investigate this possibility, basic magnetostatic field simulations were performed for heart

models with low and high wall thickness to mimic systole and diastole. The simulation results indicate

13



that the intravoxel field gradient resulting from the static field is indeed declining toward the center of
the septum, but the difference in the field gradient for low and high wall thickness is rather low and not

sufficient to explain the observed T, difference between systole and diastole.

Signal simulations performed to investigate the impact of fat resonances other than methylene for T,

mapping indicate that it is sufficient to account for methylene resonances for the choice of echo times

at which fat and water are in phase in the healthy myocardium.
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CONCLUSIONS

Interventricular septal myocardial T,” changes periodically during the cardiac cycle in healthy volunteers.
It increases in systole and decreases in diastole. Ventricular septal wall thickness and T, show a
significant positive correlation. The observed cyclic T, variations are likely related to changes in
myocardial blood volume fraction throughout the cardiac cycle. The underlying biophysical and/or
physiological mechanisms causing the T,  changes warrant further investigation. The SWT and T,
relationship bears the potential for myocardial tissue characterization and for better understanding

cardiac (patho)physiology in vivo..
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B, field and intravoxel gradient over the cardiac cycle which were derived from a short axis view of heart
of a healthy subject. A) Top: Anatomical magnitude images. Center: low pass filtered offcenter
frequency maps. Bottom: intravoxel field gradient maps, B) plot of mean intravoxel B, gradient (black) in
the left ventricular myocardium over the cardiac cycle. Relative cardiac phase 0 indicates the beginning
of systole. The estimated T, shift caused by the By variation assuming a common myocardial T, value at
7.0 T of 15ms is shown in red. Macroscopic myocardial By gradient variations over the cardiac cycle can

be considered minor regarding their effects on T, . Error bars indicate SD.
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Figure 2:
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Analysis of the impact of myocardial wall thickness on the macroscopic magnetic field. A) Short axis view
obtained from magnetostatic field simulations for low and high myocardial wall thickness that mimic
systole and diastole. Left: Model of magnetic susceptibility, center: Off-resonance frequency, right:
Intravoxel field gradient. B) Intravoxel gradient for low and high wall thickness along a profile through
the septum shown in A, demonstrating similar curves for both cases. A decrease of the field gradient can

be observed toward the center of the septum indicated by the black arrow.
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Figure 3:
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Impact of SANLM noise filtering on T,” maps of a mid-ventricular short axis view of the heart. Top:
Original and SANLM filtered signal magnitude images of the first echo (TE=2.04ms) of a series of multi-
echo gradient echo images. Center: Corresponding T, maps in ms. Bottom: T, standard deviation map
illustrating the precision of the T, maps. By applying the noise filter, an average decrease in T, standard

deviation of about 30 % in the left ventricular myocardium was achieved.
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Figure 4:
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High spatio-temporally resolved T,” mapping of a mid-ventricular short axis view of the heart of a
healthy volunteer. A: Signal magnitude images of one cardiac phase for increasing echo times illustrating
overall imaging quality and T, induced signal decay. B: High spatial resolution cardiac phase resolved
myocardial T, maps (spatial resolution: 1.1x1.1x4.0mm) of a healthy volunteer at 7.0 T overlaid on
FLASH CINE images. Distinct T,  changes can be observed in the myocardium over the cardiac cycle. C:
Corresponding map of the T, fit standard deviation. Please note the different color scales. TT indicates

time to trigger.
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Figure 5:
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Normalized plots of mean septal wall stress (o), T, , wall thickness (d) and inner left ventricular radius (r;)
plotted over the cardiac cycle for all ten volunteers. For easier comparability, cardiac phases were
referenced to their relative position in the cardiac cycle by dividing the respective time to trigger by the
R-R interval. Phase 0 indicates the beginning of systole. Additionally all parameters were normalized to
the same range from 0 to 1. Clear similarities in the time courses can be observed for wall thickness and

T, in most volunteers.
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Figure 6:
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Relationship of septal myocardial wall thickness, T,” and LV inner radius in healthy volunteers at 7.0 T A)

course of mean septal wall thickness, mean LV inner radius and mean septal T, plotted over the cardiac

cycle averaged for all volunteers. Error bars indicate SD. B) Cumulative frequency plot of ventricular

septal T, in end-systole and end-diastole for all septal voxels of all volunteers. A clear shift to higher T,"

in systole can be recognized. C) Scatter plot of mean septal T, over mean septal wall thickness in

healthy volunteers. D) Scatter plot of mean septal T, over mean septal inner LV radius. A clear

correlation can be observed for both septal wall thickness and inner radius to septal T, . Error bars in

scatter plots indicate SEM.
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