157 research outputs found

    Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy

    Get PDF
    The combination of different therapies into a single platform has attracted increasing attention as a potential synergistic tumor treatment. Herein, the fabrication of a novel folate targeted system for chemo-photothermal therapy by using thioether-bridged periodic mesoporous organosilica nanoparticles (PMOs) as a drug-loading vehicle is described. The novel targeted molecular bovine serum albumin-folic acid-modified MoS2 sheets (MoS2-PEI-BSA-FA) were successfully synthesized and characterized, and then utilized as a capping agent to block PMOs to control the drug release and to investigate their potential in near-infrared photothermal therapy. The resulting PMOs–DOX@MoS2–PEI-BSA-FA complexes had a uniform diameter (196 nm); high DOX loading capacity (185 mg/g PMOs-SH); excellent photothermal transformation ability; and good biocompatibility in physiological conditions. The PMOs–DOX@MoS2–PEI-BSA-FA exhibited pH-dependence and near infrared (NIR) laser irradiation-triggered DOX release. In vitro experimental results confirmed that the material exhibits excellent photothermal transfer ability, outstanding tumor killing efficiency and specificity to target tumor cells via an FA-receptor-mediated endocytosis process. The in vivo experiments further demonstrated that the platform for synergistic chemo-photothermal therapy could significantly inhibit tumor growth, which is superior to any monotherapy. Meanwhile, cytotoxicity assays and histological assessments show that the engineered PMOs@MoS2–PEI-BSA-FA have good biocompatibility, further inspiring potential biomedical applications. Overall, this work describes an excellent drug delivery system for chemo-photothermal synergistic targeted therapy having good drug release properties, which have great potential in cancer therapy

    l-Peptide functionalized dual-responsive nanoparticles for controlled paclitaxel release and enhanced apoptosis in breast cancer cells

    Get PDF
    Nanoparticles and macromolecular carriers have been widely used to increase the efficacy of chemotherapeutics, largely through passive accumulation provided by their enhanced permeability and retention effect. However, the therapeutic efficacy of nanoscale anticancer drug delivery systems is severely truncated by their low tumor-targetability and inefficient drug release at the target site. Here, the design and development of novel l-peptide functionalized dual-responsive nanoparticles (l-CS-g-PNIPAM-PTX) for active targeting and effective treatment of GRP78-overexpressing human breast cancer in vitro and in vivo are reported. l-CS-g-PNIPAM-PTX NPs have a relative high drug loading (13.5%) and excellent encapsulation efficiency (74.3%) and an average diameter of 275 nm. The release of PTX is slow at pH 7.4 and 25 °C but greatly accelerated at pH 5.0 and 37 °C. MTT assays and confocal experiments showed that the l-CS-g-PNIPAM-PTX NPs possessed high targetability and antitumor activity toward GRP78 overexpressing MDA-MB-231 human breast cancer cells. As expected, l-CS-g-PNIPAM-PTX NPs could effectively treat mice bearing MDA-MB-231 human breast tumor xenografts with little side effects, resulting in complete inhibition of tumor growth and a high survival rate over an experimental period of 60 days. These results indicate that l-peptide-functionalized acid - and thermally activated - PTX prodrug NPs have a great potential for targeted chemotherapy in breast cancer.</p

    Proteomic Profile of Carbonylated Proteins Screen Regulation of Apoptosis via CaMK Signaling in Response to Regular Aerobic Exercise

    Get PDF
    To research carbonylated proteins and screen molecular targets in the rat striatum on regular aerobic exercise, male SpragueDawley rats (13 months old, n = 24) were randomly divided into middle-aged sedentary control (M-SED) and aerobic exercise (M-EX) groups (n = 12 each). Maximum oxygen consumption (VO2max) gradually increased from 50%–55% to 65%–70% for a total of 10 weeks. A total of 36 carbonylated proteins with modifed oxidative sites were identifed by Electrospray IonizationQuadrupole-Time of Flight-Mass Spectrometer (ESI-Q-TOF-MS), including 17 carbonylated proteins unique to the M-SED group, calcium/calmodulin-dependent protein kinase type II subunit beta (CaMKII�), and heterogeneous nuclear ribonucleoprotein A2/B1 (Hnrnpa2b1), among others, and 19 specifc to the M-EX group, ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), and malic enzyme, among others. Regular aerobic exercise improved behavioral and stereological indicators, promoted normal apoptosis (P \u3c 0.01), alleviated carbonylation of the CaMKII� and Hnrnpa2b1, but induced carbonylation of the UCH-L1, and signifcantly upregulated the expression levels of CaMKII�, CaMKII�, and Vdac1 (p \u3c 0.01) and Hnrnpa2b1 and UCH-L1 (p \u3c 0.01), as well as the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways (PI3K/Akt/mTOR) pathway-related genes Akt and mTOR. Regular aerobic exercise for 10 weeks (incremental for the frst 6 weeks followed by constant loading for 4 weeks) enhanced carbonylation of CaMKII�, Hnrnpa2b1, and modulated apoptosis via activation of CaMK and phosphoinositide 3-kinase/protein kinase B/mTOR signaling. It also promoted normal apoptosis in the rat striatum, which may have protective efects in neurons

    Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries

    Get PDF
    Platelets are small anucleate cells circulating in the blood. It has been recognized for more than 100 years that platelet adhesion and aggregation at the site of vascular injury are critical events in hemostasis and thrombosis; however, recent studies demonstrated that, in addition to these classic roles, platelets also have important functions in inflammation and the immune response. Platelets contain many proinflammatory molecules and cytokines (e.g., P-selectin, CD40L, IL-1β, etc.), which support leukocyte trafficking, modulate immunoglobulin class switch, and germinal center formation. Platelets express several functional Toll-like receptors (TLRs), such as TLR-2, TLR-4, and TLR-9, which may potentially link innate immunity with thrombosis. Interestingly, platelets also contain multiple anti-inflammatory molecules and cytokines (e.g., transforming growth factor-β and thrombospondin-1). Emerging evidence also suggests that platelets are involved in lymphatic vessel development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2. Besides the active contributions of platelets to the immune system, platelets are passively targeted in several immune-mediated diseases, such as autoimmune thrombocytopenia, infection-associated thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. These data suggest that platelets are important immune cells and may contribute to innate and adaptive immunity under both physiological and pathological conditions

    MicroRNA Expression Profiling Screen miR-3557/324-targeted CaMK/mTOR in the Rat Striatum of Parkinson\u27s Disease in Regular Aerobic Exercise

    Get PDF
    This study aimed to screen the target miRNAs and to investigate the differential miR-3557/324-targeted signal mechanisms in the rats’ model of Parkinson’s disease (PD) with regular aerobic exercise. Rats were divided into sedentary control PD group (SED-PD, n = 18) and aerobic exercise PD group (EX-PD, n = 22). After 8 weeks of regular aerobic exercise, a 6-hydroxydopamine- (6-OHDA-) induced PD lesion model was constructed. Preregular aerobic exercises enhanced the injury resistance of rats with 6-OHDA-induced PD. The rotational behavior after injection of apomorphine hydrochloride was alleviated. Under the scanning electron microscopy, we found the neurons, axons, and villi of the striatum were clearly and tightly arranged, and neurons and axons significantly becoming larger. Tyrosine hydroxylase (TH) was increased significantly and α-synuclein protein expression was reduced in the EX-PD group compared to the SED-PD group. Screening from miRNA microarray chip, we further found upregulation of miR-3557 and downregulation of miR-324 were closely related to the calcium-modulating signaling pathway, remitting the progress of Parkinson’s disease on aerobic exercise. Compared to the SED-PD group, Ca2+/calmodulin dependent protein kinase II (CaMK2α) was upregulated, but CaMKV and voltage-dependent anion-selective channel protein 1 (Vdac1) were significantly downregulated in the EX-PD group. Additionally, phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) expression were activated, and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) expression was upregulated in the EX-PD group. Conclusions: the adaptive mechanism of regular aerobic exercise delaying neurodegenerative diseases and lesions was that miR-3557/324 was activated to regulate one of its targets CaMKs signaling pathways. CaMKs, coordinated with mTOR pathway-related gene expression, improved UCH-L1 level to favor for delaying neurodegeneration or improving the pathogenesis of PD lesions

    A DC-DC boost converter with a wide input range and high voltage gain for fuel cell vehicles

    Get PDF
    In fuel cell vehicles, the output voltage of the fuel cell source is typically much lower than the voltage required by the DC bus and also this output voltage drops significantly as the output current increases. In order to match the output voltage of the fuel cell source to the DC bus voltage, a new DC-DC boost converter with a wide input range and high voltage gain is proposed to act as the required power interface, which reduces voltage stress across the power devices and operates with an acceptable conversion efficiency. A prototype rated at 300W/400V has been developed and the maximum efficiency of the proposed converter was measured as 95.01% at 300W. Experimental results are presented to validate the effectiveness of the proposed converter

    Proteomic analysis of spinal cord tissue in a rat model of cancer-induced bone pain

    Get PDF
    BackgroundCancer-induced bone pain (CIBP) is a moderate to severe pain and seriously affects patients’ quality of life. Spinal cord plays critical roles in pain generation and maintenance. Identifying differentially expressed proteins (DEPs) in spinal cord is essential to elucidate the mechanisms of cancer pain.MethodsCIBP rat model was established by the intratibial inoculation of MRMT-1 cells. Positron emission tomography (PET) scan and transmission electron microscopy (TEM) were used to measure the stats of spinal cord in rats. Label free Liquid Chromatography with tandem mass spectrometry (LC-MS-MS) were used to analyze the whole proteins from the lumbar spinal cord. Differentially expressed proteins (DEPs) were performed using Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and verified using Western blot and immunofluorescence assay.ResultsIn the current study, CIBP rats exhibited bone damage, spontaneous pain, mechanical hyperalgesia, and impaired motor ability. In spinal cord, an hypermetabolism and functional abnormality were revealed on CIBP rats. An increase of synaptic vesicles density in active zone and a disruption of mitochondrial structure in spinal cord of CIBP rats were observed. Meanwhile, 422 DEPs, consisting of 167 up-regulated and 255 down-regulated proteins, were identified among total 1539 proteins. GO enrichment analysis indicated that the DEPs were mainly involved in catabolic process, synaptic function, and enzymic activity. KEGG pathway enrichment analysis indicated a series of pathways, including nervous system disease, hormonal signaling pathways and amino acid metabolism, were involved. Expression change of synaptic and mitochondrial related protein, such as complexin 1 (CPLX1), synaptosomal-associated protein 25 (SNAP25), synaptotagmin 1 (SYT1), aldehyde dehydrogenase isoform 1B1 (ALDH1B1), Glycine amidinotransferase (GATM) and NADH:ubiquinone oxidoreductase subunit A11 (NDUFA11), were further validated using immunofluorescence and Western blot analysis.ConclusionThis study provides valuable information for understanding the mechanisms of CIBP, and supplies potential therapeutic targets for cancer pain

    CAMKs support development of acute myeloid leukemia.

    Get PDF
    BACKGROUND: We recently identified the human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog-paired Ig-like receptor (PirB) as receptors for several angiopoietin-like proteins (Angptls). We also demonstrated that PirB is important for the development of acute myeloid leukemia (AML), but exactly how an inhibitory receptor such as PirB can support cancer development is intriguing. RESULTS: Here, we showed that the activation of Ca (2+)/calmodulin-dependent protein kinases (CAMKs) is coupled with PirB signaling in AML cells. High expression of CAMKs is associated with a poor overall survival probability in patients with AML. Knockdown of CAMKI or CAMKIV decreased human acute leukemia development in vitro and in vivo. Mouse AML cells that are defective in PirB signaling had decreased activation of CAMKs, and the forced expression of CAMK partially rescued the PirB-defective phenotype in the MLL-AF9 AML mouse model. The inhibition of CAMK kinase activity or deletion of CAMKIV significantly slowed AML development and decreased the AML stem cell activity. We also found that CAMKIV acts through the phosphorylation of one of its well-known target (CREB) in AML cells. CONCLUSION: CAMKs are essential for the growth of human and mouse AML. The inhibition of CAMK signaling may become an effective strategy for treating leukemia

    Comparing Single vs. Combined Cerebrospinal Fluid Parameters for Diagnosing Full-Term Neonatal Bacterial Meningitis

    Get PDF
    Objectives: To identify and compare the cerebrospinal fluid (CSF) parameters that predict the presence of neonatal bacterial meningitis using optimal cutoff values, and to derive and compare predictive profiles based on a combination of individual parameters for the same purpose.Study Design: The retrospective component of the Shanghai Neonate Meningitis Cohort included all term neonates who underwent lumbar puncture between 2000 and 2017. Those with severe neurological diseases, histories of ventricular drainage, or traumatic lumbar punctures were excluded. Reference ranges were determined for non-bacterial meningitis neonates based on the 5th, 25th, 50th, 75th, and 95th CSF parameter quantiles, and their relationships with age were calculated using generalized additive models that tested for linear relationships. The optimal cutoff value for each measured CSF parameter was calculated using receiver operating characteristic analysis and by deriving the Youden's index. Parameters with good diagnostic efficacies were combined to produce predictive profiles using logistic regression. The diagnostic efficacies of the single parameters and profiles were compared in neonates with confirmed bacterial meningitis.Results: White blood cells (WBCs) in CSF showed a higher diagnostic ability for neonatal bacterial meningitis than CSF protein, glucose, lactate dehydrogenase, or chloride. The sensitivity and specificity of the diagnostic cutoff value for WBCs (20 × 106/L) were 95.1 and 98.7%, respectively. Profiles based on CSF parameter combinations improved the specificities slightly to 99.0–99.7%. However, employing predictive profiles did not improve sensitivities, which remained at 95.1–96.0%.Conclusions: Profiles for predicting neonatal bacterial meningitis improve the sensitivity and specificity of diagnosis slightly, although not appreciably, compared to the single parameter of CSF WBC alone
    • …
    corecore