565 research outputs found

    “Show me, how does it look now”: Remote Help-giving in Collaborative Design

    Get PDF
    This paper examines the role of visual information in a remote help-giving situation involving the collaborative physical task of designing a prototype remote control. We analyze a set of video recordings captured within an experimental setting. Our analysis shows that using gestures and relevant artefacts and by projecting activities on the camera, participants were able to discuss several design-related issues. The results indicate that with a limited camera view (mainly faces and shoulders), participants’ conversations were centered at the physical prototype that they were designing. The socially organized use of our experimental setting provides some key implications for designing future remote collaborative systems

    Speaker-adaptive multimodal prediction model for listener responses

    Get PDF
    The goal of this paper is to analyze and model the variability in speaking styles in dyadic interactions and build a predictive algorithm for listener responses that is able to adapt to these different styles. The end result of this research will be a virtual human able to automatically respond to a human speaker with proper listener responses (e.g., head nods). Our novel speaker-adaptive prediction model is created from a corpus of dyadic interactions where speaker variability is analyzed to identify a subset of prototypical speaker styles. During a live interaction our prediction model automatically identifies the closest prototypical speaker style and predicts listener responses based on this ``communicative style". Central to our approach is the idea of ``speaker profile" which uniquely identifies each speaker and enables the matching between prototypical speakers and new speakers. The paper shows the merits of our speaker-adaptive listener response prediction model by showing improvement over a state-of-the-art approach which does not adapt to the speaker. Besides the merits of speaker-adapta-tion, our experiments highlights the importance of using multimodal features when comparing speakers to select the closest prototypical speaker style

    Thermodynamics of spin systems on small-world hypergraphs

    Full text link
    We study the thermodynamic properties of spin systems on small-world hypergraphs, obtained by superimposing sparse Poisson random graphs with p-spin interactions onto a one-dimensional Ising chain with nearest-neighbor interactions. We use replica-symmetric transfer-matrix techniques to derive a set of fixed-point equations describing the relevant order parameters and free energy, and solve them employing population dynamics. In the special case where the number of connections per site is of the order of the system size we are able to solve the model analytically. In the more general case where the number of connections is finite we determine the static and dynamic ferromagnetic-paramagnetic transitions using population dynamics. The results are tested against Monte-Carlo simulations.Comment: 14 pages, 7 figures; Added 2 figures. Extended result

    Bacteria Hunt: A multimodal, multiparadigm BCI game

    Get PDF
    Brain-Computer Interfaces (BCIs) allow users to control applications by brain activity. Among their possible applications for non-disabled people, games are promising candidates. BCIs can enrich game play by the mental and affective state information they contain. During the eNTERFACE’09 workshop we developed the Bacteria Hunt game which can be played by keyboard and BCI, using SSVEP and relative alpha power. We conducted experiments in order to investigate what difference positive vs. negative neurofeedback would have on subjects’ relaxation states and how well the different BCI paradigms can be used together. We observed no significant difference in mean alpha band power, thus relaxation, and in user experience between the games applying positive and negative feedback. We also found that alpha power before SSVEP stimulation was significantly higher than alpha power during SSVEP stimulation indicating that there is some interference between the two BCI paradigms

    Isomer shift and magnetic moment of the long-lived 1/2+^{+} isomer in 3079^{79}_{30}Zn49_{49}: signature of shape coexistence near 78^{78}Ni

    Full text link
    Collinear laser spectroscopy has been performed on the 3079^{79}_{30}Zn49_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in 79^{79}Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins I=9/2I = 9/2 and I=1/2I = 1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ\mu (79^{79}Zn) = −-1.1866(10) μN\mu_{\rm{N}}, confirms the spin-parity 9/2+9/2^{+} with a νg9/2−1\nu g_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ\mu (79m^{79m}Zn) = −-1.0180(12) μN\mu_{\rm{N}} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50N = 50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state: δ⟨rc2⟩79,79m\delta \langle r^{2}_{c}\rangle^{79,79m} = +0.204(6) fm2^{2}, providing first evidence of shape coexistence.Comment: 5 pages, 4 figures, 1 table, Accepeted by Phys. Rev. Lett. (2016

    Decay-assisted collinear resonance ionization spectroscopy: Application to neutron-deficient francium

    Full text link
    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes 202−206^{202-206}Fr performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly-sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes 202−206^{202-206}Fr, in addition to the identification of the low-lying states of 202,204^{202,204}Fr performed at the CRIS experiment.Comment: Accepted for publication with Physical Review

    Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

    Full text link
    The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich 218m,219,229,231Fr^{218m,219,229,231}\text{Fr} isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the 7s 2S1/27s~^{2}S_{1/2} to 8p 2P3/28p~^{2}P_{3/2} atomic transition. The δ⟨r2⟩A,221\delta\langle r^{2}\rangle^{A,221} values for 218m,219Fr^{218m,219}\text{Fr} and 229,231Fr^{229,231}\text{Fr} follow the observed increasing slope of the charge radii beyond N = 126N~=~126. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that 220Fr^{220}\text{Fr} has a weakly inverted odd-even staggering while 228Fr^{228}\text{Fr} has normal staggering. This suggests that both isotopes reside at the borders of a region of inverted staggering, which has been associated with reflection-asymmetric shapes. The g(219Fr)=+0.69(1)g(^{219}\text{Fr}) = +0.69(1) value supports a π1h9/2\pi 1h_{9/2} shell model configuration for the ground state. The g(229,231Fr)g(^{229,231}\text{Fr}) values support the tentative Iπ(229,231Fr)=(1/2+)I^{\pi}(^{229,231}\text{Fr}) = (1/2^{+}) spin, and point to a πs1/2−1\pi s_{1/2}^{-1} intruder ground state configuration.Comment: Accepted for publication with Physical Review

    Optimisation of a lozenge-based sensor for detecting impending blockage of urinary catheters

    Get PDF
    Catheter-associated urinary tract infections resulting from urease-positive microorganisms are more likely to cause a urinary catheter blockage owing to the urease activity of the microbes. Catheter blockage can be dangerous and increases the risk of severe infections, such as sepsis. Ureases, a virulence factor in Proteus mirabilis, cause an increase in urine pH - leading to blockage. An optimised biosensor "lozenge" is presented here, which is able to detect impending catheter blockage. This lozenge has been optimised to allow easy manufacture and commercialisation. It functions as a sensor in a physiologically representative model of a catheterised urinary tract, providing 6.7 h warning prior to catheter blockage. The lozenge is stable in healthy human urine and can be sterilized for clinical use by ethylene oxide. Clinically, the lozenge will provide a visible indication of impending catheter blockage, enabling quicker clinical intervention and thus reducing the morbidity and mortality associated with blockage.</p
    • …
    corecore