1,204 research outputs found
Describing many-body localized systems in thermal environments
In this work we formulate an efficient method for the description of fully many-body localized systems in weak contact with thermal environments at temperature T. The key idea is to exploit the representation of the system in terms of quasi-local integrals of motion (l-bits) to efficiently derive the generator for the quantum master equation in Born-Markov approximation. We, moreover, show how to compute the steady state of this equation efficiently by using quantum-jump Monte-Carlo techniques as well as by deriving approximate kinetic equations of motion. As an example, we consider a one-dimensional disordered extended Hubbard model for spinless fermions, for which we derive the l-bit representation approximately by employing a recently proposed method valid in the limit of strong disorder and weak interactions. Coupling the system to a global thermal bath, we study the transport between two leads with different chemical potentials at both of its ends. We find that the temperature-dependent current is captured by an interaction-dependent version of Mott's law for variable range hopping, where transport is enhanced/lowered depending on whether the interactions are attractive or repulsive, respectively. We interpret these results in terms of spatio-energetic correlations between the l-bits
The Crooks relation in optical spectra - universality in work distributions for weak local quenches
We show that work distributions and non-equilibrium work fluctuation theorems
can be measured in optical spectra for a wide class of quantum systems. We
consider systems where the absorption or emission of a photon corresponds to
the sudden switch on or off of a local perturbation. For the particular case of
a weak local perturbation, the Crooks relation establishes a universal relation
in absorption as well as in emission spectra. Due to a direct relation between
the spectra and work distribution functions this is equivalent to universal
relations in work distributions for weak local quenches. As two concrete
examples we treat the X-ray edge problem and the Kondo exciton.Comment: 4+ pages, 1 figure; version as publishe
Dynamical Quantum Phase Transitions in the Transverse Field Ising Model
A phase transition indicates a sudden change in the properties of a large
system. For temperature-driven phase transitions this is related to
non-analytic behavior of the free energy density at the critical temperature:
The knowledge of the free energy density in one phase is insufficient to
predict the properties of the other phase. In this paper we show that a close
analogue of this behavior can occur in the real time evolution of quantum
systems, namely non-analytic behavior at a critical time. We denote such
behavior a dynamical phase transition and explore its properties in the
transverse field Ising model. Specifically, we show that the equilibrium
quantum phase transition and the dynamical phase transition in this model are
intimately related.Comment: 4+4 pages, 4 figures, Appendix adde
Magnetar giant flare high-energy emission
High energy ( keV) emission has been detected persisting for several
tens of seconds after the initial spike of magnetar giant flares. It has been
conjectured that this emission might arise via inverse Compton scattering in a
highly extended corona generated by super-Eddington outflows high up in the
magnetosphere. In this paper we undertake a detailed examination of this model.
We investigate the properties of the required scatterers, and whether the
mechanism is consistent with the degree of pulsed emission observed in the tail
of the giant flare. We conclude that the mechanism is consistent with current
data, although the origin of the scattering population remains an open
question. We propose an alternative picture in which the emission is closer to
that star and is dominated by synchrotron radiation. The observations
of the December 2004 flare modestly favor this latter picture. We assess the
prospects for the Fermi Gamma-Ray Space Telescope to detect and characterize a
similar high energy component in a future giant flare. Such a detection should
help to resolve some of the outstanding issues.Comment: 20 pages, 14 figure
Handling and analysis of ices in cryostats and glove boxes in view of cometary samples
Comet nucleus sample return mission and other return missions from planets and satellites need equipment for handling and analysis of icy samples at low temperatures under vacuum or protective gas. Two methods are reported which were developed for analysis of small icy samples and which are modified for larger samples in cometary matter simulation experiments (KOSI). A conventional optical cryostat system was modified to allow for transport of samples at 5 K, ion beam irradiation, and measurement in an off-line optical spectrophotometer. The new system consists of a removable window plug containing nozzles for condensation of water and volatiles onto a cold finger. This plug can be removed in a vacuum system, changed against another plug (e.g., with other windows (IR, VIS, VUV) or other nozzles). While open, the samples can be treated under vacuum with cooling by manipulators (cut, removal, sample taking, irradiation with light, photons, or ions). After bringing the plug back, the samples can be moved to another site of analysis. For handling the 30 cm diameter mineral-ice samples from the KOSI experiments an 80x80x80 cm glove box made out of plexiglass was used. The samples were kept in a liquid nitrogen bath, which was filled from the outside. A stream a dry N2 and evaporating gas from the bath purified the glove box from impurity gases and, in particular, H2O, which otherwise would condense onto the samples
Polarization Evolution in Strong Magnetic Fields
Extremely strong magnetic fields change the vacuum index of refraction.
Although this polarization dependent effect is small for typical neutron stars,
it is large enough to decouple the polarization states of photons traveling
within the field. The photon states evolve adiabatically and follow the
changing magnetic field direction. The combination of a rotating magnetosphere
and a frequency dependent state decoupling predicts polarization phase lags
between different wave bands, if the emission process takes place well within
the light cylinder. This QED effect may allow observations to distinguish
between different pulsar emission mechanisms and to reconstruct the structure
of the magnetosphere.Comment: 22 pages, 10 figures, accepted for publication in MNRA
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
Gauge theories are fundamental to our understanding of interactions between
the elementary constituents of matter as mediated by gauge bosons. However,
computing the real-time dynamics in gauge theories is a notorious challenge for
classical computational methods. In the spirit of Feynman's vision of a quantum
simulator, this has recently stimulated theoretical effort to devise schemes
for simulating such theories on engineered quantum-mechanical devices, with the
difficulty that gauge invariance and the associated local conservation laws
(Gauss laws) need to be implemented. Here we report the first experimental
demonstration of a digital quantum simulation of a lattice gauge theory, by
realising 1+1-dimensional quantum electrodynamics (Schwinger model) on a
few-qubit trapped-ion quantum computer. We are interested in the real-time
evolution of the Schwinger mechanism, describing the instability of the bare
vacuum due to quantum fluctuations, which manifests itself in the spontaneous
creation of electron-positron pairs. To make efficient use of our quantum
resources, we map the original problem to a spin model by eliminating the gauge
fields in favour of exotic long-range interactions, which have a direct and
efficient implementation on an ion trap architecture. We explore the Schwinger
mechanism of particle-antiparticle generation by monitoring the mass production
and the vacuum persistence amplitude. Moreover, we track the real-time
evolution of entanglement in the system, which illustrates how particle
creation and entanglement generation are directly related. Our work represents
a first step towards quantum simulating high-energy theories with atomic
physics experiments, the long-term vision being the extension to real-time
quantum simulations of non-Abelian lattice gauge theories
How Common Are Magnetars? The Consequences of Magnetic-Field Decay
Ultramagnetized neutron stars or magnetars have been invoked to explain
several astrophysical phenomena. We examine how the magnetic field of a
magnetar will decay over time and how this decay affects the cooling of the
object. We find that for sufficiently strong nascent fields, field decay alters
the cooling evolution significantly relative to similarly magnetized neutron
stars with constant fields. As a result, old magnetars can be expected to be
bright in the soft X-ray band. The soft X-ray source RXJ~0720.43125 may well
be the nearest such old magnetar.Comment: 7 pages, 1 figure, accepted for publication in Ap. J. Letter
Powering Anomalous X-ray Pulsars by Neutron Star Cooling
Using recently calculated analytic models for the thermal structure of
ultramagnetized neutron stars, we estimate the thermal fluxes from young
( yr) ultramagnetized ( G) cooling neutron stars.
We find that the pulsed X-ray emission from objects such as 1E 1841-045 and 1E
2259+586 as well as many soft-gamma repeaters can be explained by photon
cooling if the neutron star possesses a thin insulating envelope of matter of
low atomic weight at densities g/cm. The total mass
of this insulating layer is .Comment: 8 pages, 1 figure, to appear in Ap.J. Letters (one reference entry
corrected, no other changes
Dispersion Relations for Bernstein Waves in a Relativistic Pair Plasma
A fully relativistic treatment of Bernstein waves in an electron-positron
pair plasma has remained too formidable a task owing to the very complex nature
of the problem. In this article, we perform contour integration of the
dielectric response function and numerically compute the dispersion curves for
a uniform, magnetized, relativistic electron-positron pair plasma. The behavior
of the dispersion solution for several cases with different plasma temperatures
is highlighted. In particular, we find two wave modes that exist only for large
wavelengths and frequencies similar to the cyclotron frequency in a moderately
relativistic pair plasma. The results presented here have important
implications for the study of those objects where a hot magnetized
electron-positron plasma plays a fundamental role in generating the observed
radiation.Comment: 8 pages, 8 figures, Accepted for publication by Phys. Rev. E with
minor change
- …
