104 research outputs found

    An innovative approach to multi-method integrated assessment modelling of global climate change

    Get PDF
    © 2020, University of Surrey. All rights reserved. Modelling and simulation play an increasingly significant role in exploratory studies for informing policy makers on climate change mitigation strategies. There is considerable research being done in creating Integrated Assessment Models (IAMs), which focus on examining the human impacts on climate change. Many popular IAMs are created as steady state optimisation models. They typically employ a nested structure of neoclassical production functions to represent the energy-economy system, holding aggregate views on variables, and hence are unable to capture a finer level of details of the underlying system components. An alternative approach that allows modelling populations as a collection of individual and unevenly distributed entities is Agent-Based Modelling, often used in the field of Social Simulation. But simulating huge numbers of individual entities can quickly become an issue, as it requires large amounts of computational resources. The goal of this paper is to introduce a conceptual framework for developing hybrid IAMs. This novel modelling approach allows us to reuse existing rigid, but well-established IAMs, and adds more flexibility by replacing aggregate stocks with a community of vibrant interacting entities. We provide a proof-of-concept of the application of this conceptual framework in form of an illustrative example. Our test case takes the settings of the US. It is solely created for the purpose of demonstrating our hybrid modelling approach; we do not claim that it has predictive powers

    A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

    Get PDF
    Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea () is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia

    The surprising negative correlation of gene length and optimal codon use - disentangling translational selection from GC-biased gene conversion in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surprisingly, in several multi-cellular eukaryotes optimal codon use correlates negatively with gene length. This contrasts with the expectation under selection for translational accuracy. While suggested explanations focus on variation in strength and efficiency of translational selection, it has rarely been noticed that the negative correlation is reported only in organisms whose optimal codons are biased towards codons that end with G or C (-GC). This raises the question whether forces that affect base composition - such as GC-biased gene conversion - contribute to the negative correlation between optimal codon use and gene length.</p> <p>Results</p> <p>Yeast is a good organism to study this as equal numbers of optimal codons end in -GC and -AT and one may hence compare frequencies of optimal GC- with optimal AT-ending codons to disentangle the forces. Results of this study demonstrate in yeast frequencies of GC-ending (optimal AND non-optimal) codons decrease with gene length and increase with recombination. A decrease of GC-ending codons along genes contributes to the negative correlation with gene length. Correlations with recombination and gene expression differentiate between GC-ending and optimal codons, and also substitution patterns support effects of GC-biased gene conversion.</p> <p>Conclusion</p> <p>While the general effect of GC-biased gene conversion is well known, the negative correlation of optimal codon use with gene length has not been considered in this context before. Initiation of gene conversion events in promoter regions and the presence of a gene conversion gradient most likely explain the observed decrease of GC-ending codons with gene length and gene position.</p

    An evaluation of classification systems for stillbirth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Audit and classification of stillbirths is an essential part of clinical practice and a crucial step towards stillbirth prevention. Due to the limitations of the ICD system and lack of an international approach to an acceptable solution, numerous disparate classification systems have emerged. We assessed the performance of six contemporary systems to inform the development of an internationally accepted approach.</p> <p>Methods</p> <p>We evaluated the following systems: Amended Aberdeen, Extended Wigglesworth; PSANZ-PDC, ReCoDe, Tulip and CODAC. Nine teams from 7 countries applied the classification systems to cohorts of stillbirths from their regions using 857 stillbirth cases. The main outcome measures were: the ability to retain the important information about the death using the <it>InfoKeep </it>rating; the ease of use according to the <it>Ease </it>rating (both measures used a five-point scale with a score <2 considered unsatisfactory); inter-observer agreement and the proportion of unexplained stillbirths. A randomly selected subset of 100 stillbirths was used to assess inter-observer agreement.</p> <p>Results</p> <p><it>InfoKeep </it>scores were significantly different across the classifications (<it>p </it>≤ 0.01) due to low scores for Wigglesworth and Aberdeen. CODAC received the highest mean (SD) score of 3.40 (0.73) followed by PSANZ-PDC, ReCoDe and Tulip [2.77 (1.00), 2.36 (1.21), 1.92 (1.24) respectively]. Wigglesworth and Aberdeen resulted in a high proportion of unexplained stillbirths and CODAC and Tulip the lowest. While <it>Ease </it>scores were different (<it>p </it>≤ 0.01), all systems received satisfactory scores; CODAC received the highest score. Aberdeen and Wigglesworth showed poor agreement with kappas of 0.35 and 0.25 respectively. Tulip performed best with a kappa of 0.74. The remainder had good to fair agreement.</p> <p>Conclusion</p> <p>The Extended Wigglesworth and Amended Aberdeen systems cannot be recommended for classification of stillbirths. Overall, CODAC performed best with PSANZ-PDC and ReCoDe performing well. Tulip was shown to have the best agreement and a low proportion of unexplained stillbirths. The virtues of these systems need to be considered in the development of an international solution to classification of stillbirths. Further studies are required on the performance of classification systems in the context of developing countries. Suboptimal agreement highlights the importance of instituting measures to ensure consistency for any classification system.</p

    Flare Observations

    Get PDF
    corecore