1,007 research outputs found

    The Realization of Artificial Kondo Lattices in Nanostructured Arrays

    Full text link
    The interplay of magnetic energies in a Kondo lattice is the underlying physics of a heavy fermion system. Creating an artificial Kondo lattice system by localizing the moments in an ordered metallic array provides a prototype system to tune and study the energetic interplay while avoiding the complications introduced by random alloying of the material. In this article, we create a Kondo lattice system by fabricating a hexagonally ordered nanostructured array using niobium as the host metal and cobalt as the magnetic constituent. Electrical transport measurements and magnetoresistivity measurements of these artificial lattices show that the competing exchange coupling properties can be easily tuned by controlling the impurity percentage. These artificial Kondo lattice systems enable the exploration of an artificial superconductor which should lead to a deep understanding of the role of magnetism in unconventional superconductors.Comment: Artificial Magnetic Crystal

    The bosonic Kondo effect

    Full text link
    The Kondo effect is associated with the formation of a many-body ground state that contains a quantum-mechanical entanglement between a (localized) fermion and the free fermions. We show that a bosonic version of the Kondo effect can occur in degenerate atomic Fermi gases near the Feshbach resonance. We also discuss how this bosonic Kondo effect can be observed experimentally.Comment: 4 pages, 2 figures, some references added, some removed. More comments adde

    Mechanism for large thermoelectric power in negative-U molecular quantum dots

    Full text link
    We investigate with the aid of numerical renormalization group techniques the thermoelectric properties of a molecular quantum dot described by the negative-U Anderson model. We show that the charge Kondo effect provides a mechanism for enhanced thermoelectric power via a correlation induced asymmetry in the spectral function close to the Fermi level. We show that this effect results in a dramatic enhancement of the Kondo induced peak in the thermopower of negative-U systems with Seebeck coefficients exceeding 50μV/K\mu V/K over a wide range of gate voltages.Comment: 4 pages, 4 figures; published versio

    Two Anderson impurities in a 2D host with Rashba spin-orbit interaction

    Full text link
    We have studied the two-dimensional two-impurity Anderson model with additional Rashba spin-orbit interaction by means of the modified perturbation theory. The impurity Green's functions we have constructed exactly reproduce the first four spectral moments. We discuss the height and the width of the even/odd Kondo peaks as functions of the inter-impurity distance and the Rashba energy ERE_R (the strength of the Rashba spin-orbit interaction). For small impurity separations the Kondo temperature shows a non-monotonic dependence on ERE_R being different in the even and the odd channel. We predict that the Kondo temperature has only almost linear dependence on ERE_R and not an exponential increase with ERE_RComment: To be published in Phys. Rev.

    Effective model of the electronic Griffiths phase

    Full text link
    We present simple analytical arguments explaining the universal emergence of electronic Griffiths phases as precursors of disorder-driven metal-insulator transitions in correlated electronic systems. A simple effective model is constructed and solved within Dynamical Mean Field Theory. It is shown to capture all the qualitative and even quantitative aspects of such Griffiths phases.Comment: 9 pages, 7 figures, one reference corrected; minor corrections include

    The Strong Coupling Fixed-Point Revisited

    Full text link
    In recent work we have shown that the Fermi liquid aspects of the strong coupling fixed point of the s-d and Anderson models can brought out more clearly by interpreting the fixed point as a renormalized Anderson model, characterized by a renormalized level ϵ~d\tilde\epsilon_d, resonance width, Δ~\tilde\Delta, and interaction U~\tilde U, and a simple prescription for their calculation was given using the numerical renormalization group (NRG). These three parameters completely specify a renormalized perturbation theory (RPT) which leads to exact expressions for the low temperature behaviour. Using a combination of the two techniques, NRG to determine ϵ~d\tilde\epsilon_d, Δ~\tilde\Delta, and U~\tilde U, and then substituting these in the RPT expressions gives a very efficient and accurate way of calculating the low temperature behaviour of the impurity as it avoids the necessity of subtracting out the conduction electron component. Here we extend this approach to an Anderson model in a magnetic field, so that ϵ~d\tilde\epsilon_d, Δ~\tilde\Delta, and U~\tilde U become dependent on the magnetic field. The de-renormalization of the renormalized quasiparticles can then be followed as the magnetic field strength is increased. Using these running coupling constants in a RPT calculation we derive an expression for the low temperature conductivity for arbitrary magnetic field strength.Comment: Contribution to JPSJ volume commemorating the 40th anniversary of the publication of Kondo's original pape

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=∞U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=∞d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=∞d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Thermoelectric effects in Kondo correlated quantum dots

    Full text link
    In this Letter we study thermoelectric effects in ultra small quantum dots. We study the behaviour of the thermopower, Peltier coefficient and thermal conductance both in the sequencial tunneling regime and in the regime where Kondo correlations develope. Both cases of linear response and non-equilibrium induced by strong temperature gradients are considered. The thermopower is a very sensitive tool to detect Kondo correlations. It changes sign both as a function of temperature and temperature gradient. We also discuss violations of the Wiedemann-Franz law.Comment: 7 pages; 5 figure

    Spectral scaling and quantum critical behaviour in the pseudogap Anderson model

    Full text link
    The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi liquid and local moment phases, via the local moment approach. Both phases are shown to be characterized by a low-energy scale that vanishes at the QCP; and the universal scaling spectra, on all energy scales, are obtained analytically. The spectrum precisely at the QCP is also obtained; its form showing clearly the non-Fermi liquid, interacting nature of the fixed point.Comment: 7 pages, 2 figure

    Single-particle dynamics of the Anderson model: a two-self-energy description within the numerical renormalization group approach

    Full text link
    Single-particle dynamics of the Anderson impurity model are studied using both the numerical renormalization group (NRG) method and the local moment approach (LMA). It is shown that a 'two-self-energy' description of dynamics inherent to the LMA, as well as a conventional 'single-self-energy' description, arise within NRG; each yielding correctly the same local single-particle spectrum. Explicit NRG results are obtained for the broken symmetry spectral constituents arising in a two-self-energy description, and the total spectrum. These are also compared to analytical results obtained from the LMA as implemented in practice. Very good agreement between the two is found, essentially on all relevant energy scales from the high-energy Hubbard satellites to the low-energy Kondo resonance.Comment: 12 pages, 6 figure
    • …
    corecore