45 research outputs found

    The Contradictions of First-Year Teaching: Why New Teachers Don\u27t Want to Return to the Classroom

    Get PDF
    Teachers are leaving the profession at an alarming rate. Beginning teachers are one of the largest groups of teachers to leave the profession every year. This paper examines the common internal and external conflicts that first-year teachers struggle with in order to create their teaching identity and how that affects their retention. Through the analysis of educational experts and their evidence-based research, the conflicts of new teachers have been collected and analyzed to determine the reasons why new teachers are not staying in the profession. Conclusions are drawn regarding how education teachers, district/school officials, and political officials can make changes so that first-year teachers will remain in the teaching profession

    Coalescent Simulations Reveal Hybridization and Incomplete Lineage Sorting in Mediterranean Linaria

    Get PDF
    We examined the phylogenetic history of Linaria with special emphasis on the Mediterranean sect. Supinae (44 species). We revealed extensive highly supported incongruence among two nuclear (ITS, AGT1) and two plastid regions (rpl32-trnLUAG, trnS-trnG). Coalescent simulations, a hybrid detection test and species tree inference in *BEAST revealed that incomplete lineage sorting and hybridization may both be responsible for the incongruent pattern observed. Additionally, we present a multilabelled *BEAST species tree as an alternative approach that allows the possibility of observing multiple placements in the species tree for the same taxa. That permitted the incorporation of processes such as hybridization within the tree while not violating the assumptions of the *BEAST model. This methodology is presented as a functional tool to disclose the evolutionary history of species complexes that have experienced both hybridization and incomplete lineage sorting. The drastic climatic events that have occurred in the Mediterranean since the late Miocene, including the Quaternary-type climatic oscillations, may have made both processes highly recurrent in the Mediterranean flora

    Phylogeography and Demographic History of Babina pleuraden (Anura, Ranidae) in Southwestern China

    Get PDF
    Factors that determine genetic structure of species in southwestern China remain largely unknown. In this study, sequences of two mitochondrial genes (COI and cyt b) were determined to investigate the phylogeography and demography of Babina pleuraden, a pond frog endemic to southwestern China. A total of 262 individuals from 22 populations across the entire range of the species were collected. Our results indicate that B. pleuraden comprises five well-supported mitochondrial lineages roughly corresponding to five geographical areas. The phylogeographic structure of B. pleuraden has been shaped primarily by the unique regional responses of the Yunnan Plateau to the rapid uplift of the Qinghai-Tibetan Plateau occurred c. 2.5 Mya (B phrase of Qingzang Movement) and climatic oscillation during middle Pleistocene (c. 0.64–0.36 Mya), rather than by the paleo-drainage systems. The present wide distribution of the species has resulted from recent population expansion (c. 0.053–0.025 Mya) from multiple refugia prior to the Last Glacial Maximum, corresponding to the scenario of “refugia within refugia”

    Alpine Crossroads or Origin of Genetic Diversity? Comparative Phylogeography of Two Sympatric Microgastropod Species

    Get PDF
    The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa – Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826) (Gastropoda, Eupulmonata, Carychiidae) – by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (re)colonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant ‘hot-spot’ for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic) transport could mislead the interpretation of observed phylogeographical patterns in general

    Lineage diversification and historical demography of a montane bird Garrulax elliotii - implications for the Pleistocene evolutionary history of the eastern Himalayas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in many extant species. In montane habitats, species' ranges may have expanded and contracted along an altitudinal gradient in response to environmental fluctuations leading to alternating periods of genetic isolation and connectivity. Because species' responses to climate change are influenced by interactions between species-specific characteristics and local topography, diversification pattern differs between species and locations. The eastern Himalayas is one of the world's most prominent mountain ranges. Its complex topography and environmental heterogeneity present an ideal system in which to study how climatic changes during Pleistocene have influenced species distributions, genetic diversification, and demography. The Elliot's laughing thrush (<it>Garrulax elliotii</it>) is largely restricted to high-elevation shrublands in eastern Himalayas. We used mitochondrial DNA and microsatellites to investigate how genetic diversity in this species was affected by Pleistocene glaciations.</p> <p>Results</p> <p>Mitochondrial data detected two partially sympatric north-eastern and southern lineages. Microsatellite data, however, identified three distinct lineages congruent with the geographically separated southern, northern and eastern eco-subregions of the eastern Himalayas. Geographic breaks occur in steep mountains and deep valleys of the Kangding-Muli-Baoxin Divide. Divergence time estimates and coalescent simulations indicate that lineage diversification occurred on two different geographic and temporal scales; recent divergence, associated with geographic isolation into individual subregions, and historical divergence, associated with displacement into multiple refugia. Despite long-term isolation, genetic admixture among these subregional populations was observed, indicating historic periods of connectivity. The demographic history of <it>Garrulax elliotii </it>shows continuous population growth since late Pleistocene (about 0.125 mya).</p> <p>Conclusion</p> <p>While altitude-associated isolation is typical of many species in other montane regions, our results suggest that eco-subregions in the eastern Himalayas exhibiting island-like characteristics appear to have determined the diversification of <it>Garrulax elliotii</it>. During the Pleistocene, these populations became isolated on subregions during interglacial periods but were connected when these expanded to low altitude during cooler periods. The resultant genetic admixture of lineages might obscure pattern of genetic variation. Our results provide new insights into sky island diversification in a previously unstudied region, and further demonstrate that Pleistocene climatic changes can have profound effects on lineage diversification and demography in montane species.</p

    Limited genetic variation and structure in softshell clams (Mya arenaria) across their native and introduced range

    Get PDF
    Author Posting. © Springer, 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Conservation Genetics 10 (2009): 803-814, doi:10.1007/s10592-008-9641-y.To offset declines in commercial landings of the softshell clam, Mya arenaria, resource managers are engaged in extensive stocking of seed clams throughout its range in the northwest Atlantic. Because a mixture of native and introduced stocks can disrupt locally adapted genotypes, we investigated genetic structure in M. arenaria populations across its current distribution to test for patterns of regional differentiation. We sequenced mitochondrial cytochrome oxidase I (COI) for a total of 212 individuals from 12 sites in the northwest Atlantic (NW Atlantic), as well as two introduced sites, the northeast Pacific (NE Pacific) and the North Sea and Europe (NS Europe). Populations exhibited extremely low genetic variation, with one haplotype dominating (65-100%) at all sites sampled. Despite being introduced in the last 150-400 years, both NE Pacific and NS Europe populations had higher diversity measures than those in the NW Atlantic and both contained private haplotypes at frequencies of 10% to 27% consistent with their geographic isolation. While significant genetic structure (FST = 0.159, p<0.001) was observed between NW Atlantic and NS Europe, there was no evidence for genetic structure across the pronounced environmental clines of the NW Atlantic. Reduced genetic diversity in mtDNA combined with previous studies reporting reduced genetic diversity in nuclear markers strongly suggests a recent population expansion in the NW Atlantic, a pattern that may result from the retreat of ice sheets during Pleistocene glacial periods. Lack of genetic diversity and regional genetic differentiation suggests that present management strategies for the commercially important softshell clam are unlikely to have a significant impact on the regional distribution of genetic variation, although the possibility of disrupting locally adapted stocks cannot be excluded.This work was supported by NSF grants OCE-0326734 and OCE-0215905 to L. Mullineaux and OCE- 0349177 (Biological Oceanography) to PHB

    The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis

    Get PDF
    Background Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, Cardinalis cardinalis. Results Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species\u27 range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in México. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America. Conclusion We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in C. cardinalis. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered simultaneously

    Glaciation Effects on the Phylogeographic Structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes

    Get PDF
    The long-tailed pygmy rice rat Oligoryzomys longicaudatus (Sigmodontinae), the major reservoir of Hantavirus in Chile and Patagonian Argentina, is widely distributed in the Mediterranean, Temperate and Patagonian Forests of Chile, as well as in adjacent areas in southern Argentina. We used molecular data to evaluate the effects of the last glacial event on the phylogeographic structure of this species. We examined if historical Pleistocene events had affected genetic variation and spatial distribution of this species along its distributional range. We sampled 223 individuals representing 47 localities along the species range, and sequenced the hypervariable domain I of the mtDNA control region. Aligned sequences were analyzed using haplotype network, Bayesian population structure and demographic analyses. Analysis of population structure and the haplotype network inferred three genetic clusters along the distribution of O. longicaudatus that mostly agreed with the three major ecogeographic regions in Chile: Mediterranean, Temperate Forests and Patagonian Forests. Bayesian Skyline Plots showed constant population sizes through time in all three clusters followed by an increase after and during the Last Glacial Maximum (LGM; between 26,000–13,000 years ago). Neutrality tests and the “g” parameter also suggest that populations of O. longicaudatus experienced demographic expansion across the species entire range. Past climate shifts have influenced population structure and lineage variation of O. longicaudatus. This species remained in refugia areas during Pleistocene times in southern Temperate Forests (and adjacent areas in Patagonia). From these refugia, O. longicaudatus experienced demographic expansions into Patagonian Forests and central Mediterranean Chile using glacial retreats

    The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, <it>Cardinalis cardinalis</it>.</p> <p>Results</p> <p>Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species' range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in México. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America.</p> <p>Conclusion</p> <p>We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in <it>C. cardinalis</it>. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered simultaneously.</p
    corecore